BPS Kerr-AdS time machines View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07

AUTHORS

M. Cvetič, Wei-Jian Geng, H. Lü, C. N. Pope

ABSTRACT

It was recently observed that Kerr-AdS metrics with negative mass can describe smooth spacetimes that have a region within which naked closed time-like curves can arise, bounded by a velocity of light surface. Such spacetimes are sometimes known as time machines. In this paper we study the BPS limit of these metrics, and find that the mass and angular momenta become discretised. The completeness of the spacetime also requires that the asymptotic time coordinate be periodic, with precisely the same period as that which arises naturally for the global AdS, viewed as a hyperboliod in one extra dimension, in which the time machine spacetime is immersed. For the case of equal angular momenta in odd dimensions, we construct the Killing spinors explicitly, and show they are consistent with the global structure. Thus in examples where the solutions can be embedded in gauged supergravity, they will be supersymmetric. We also compare the global structure of the BPS AdS3 time machine with the BTZ black hole, and show that the global structure allows two different supersymmetric limits. More... »

PAGES

88

References to SciGraph publications

  • 1968-12. Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-02-16. General (Anti-)de Sitter black holes in five dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-07-23. New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep07(2018)088

    DOI

    http://dx.doi.org/10.1007/jhep07(2018)088

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105556239


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Physics, Beijing Normal University, 100875, Beijing, China", 
                "Department of Physics and Astronomy, University of Pennsylvania, 19104, Philadelphia, PA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cveti\u010d", 
            "givenName": "M.", 
            "id": "sg:person.012222536305.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Normal University", 
              "id": "https://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geng", 
            "givenName": "Wei-Jian", 
            "id": "sg:person.013530354055.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530354055.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tianjin University", 
              "id": "https://www.grid.ac/institutes/grid.33763.32", 
              "name": [
                "Department of Physics, Tianjin University, 300350, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00fc", 
            "givenName": "H.", 
            "id": "sg:person.012136555175.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Physics, Beijing Normal University, 100875, Beijing, China", 
                "George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.", 
                "DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pope", 
            "givenName": "C. N.", 
            "id": "sg:person.07512552121.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000242844", 
              "https://doi.org/10.1088/1126-6708/2009/07/082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000242844", 
              "https://doi.org/10.1088/1126-6708/2009/07/082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.084001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001808711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.084001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001808711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/16/11/311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002539546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(01)00181-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005137910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.071101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.071101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.071101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007978307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00484-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018625528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(03)00484-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018625528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.171102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019783588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.171102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019783588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/16/1/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021985376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.064005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026311803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.59.064005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026311803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(86)90186-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027947577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(96)01460-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029162200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/17/20/305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029888988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.160401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032385122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.109.160401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032385122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/9/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036283666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/22/9/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036283666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.021701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038110578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.021701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038110578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.021701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038110578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038406054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038406054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/02/031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038749315", 
              "https://doi.org/10.1088/1126-6708/2001/02/031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.21.447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042483490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.21.447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042483490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomphys.2004.05.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048650603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(00)00335-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052260968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053240501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.69.1849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053240501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.11.237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.11.237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2004.v8.n4.a3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-6382/aa66d5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084600833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03399503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101127207", 
              "https://doi.org/10.1007/bf03399503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03399503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101127207", 
              "https://doi.org/10.1007/bf03399503"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07", 
        "datePublishedReg": "2018-07-01", 
        "description": "It was recently observed that Kerr-AdS metrics with negative mass can describe smooth spacetimes that have a region within which naked closed time-like curves can arise, bounded by a velocity of light surface. Such spacetimes are sometimes known as time machines. In this paper we study the BPS limit of these metrics, and find that the mass and angular momenta become discretised. The completeness of the spacetime also requires that the asymptotic time coordinate be periodic, with precisely the same period as that which arises naturally for the global AdS, viewed as a hyperboliod in one extra dimension, in which the time machine spacetime is immersed. For the case of equal angular momenta in odd dimensions, we construct the Killing spinors explicitly, and show they are consistent with the global structure. Thus in examples where the solutions can be embedded in gauged supergravity, they will be supersymmetric. We also compare the global structure of the BPS AdS3 time machine with the BTZ black hole, and show that the global structure allows two different supersymmetric limits.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep07(2018)088", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "name": "BPS Kerr-AdS time machines", 
        "pagination": "88", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a63e27b87f979f9f1342bb271f9a90b6937bcb1582e243040a0c0bb1251f4557"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep07(2018)088"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105556239"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep07(2018)088", 
          "https://app.dimensions.ai/details/publication/pub.1105556239"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000604.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP07(2018)088"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)088'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)088'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)088'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)088'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep07(2018)088 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N74d77879c4ee4580a5495fdf21b1a95e
    4 schema:citation sg:pub.10.1007/bf03399503
    5 sg:pub.10.1088/1126-6708/2001/02/031
    6 sg:pub.10.1088/1126-6708/2009/07/082
    7 https://doi.org/10.1016/0003-4916(86)90186-7
    8 https://doi.org/10.1016/j.geomphys.2004.05.001
    9 https://doi.org/10.1016/s0370-2693(01)00181-2
    10 https://doi.org/10.1016/s0370-2693(96)01460-8
    11 https://doi.org/10.1016/s0550-3213(00)00335-7
    12 https://doi.org/10.1016/s0550-3213(03)00484-x
    13 https://doi.org/10.1088/0264-9381/16/1/001
    14 https://doi.org/10.1088/0264-9381/16/11/311
    15 https://doi.org/10.1088/0264-9381/17/20/305
    16 https://doi.org/10.1088/0264-9381/22/9/002
    17 https://doi.org/10.1088/1361-6382/aa66d5
    18 https://doi.org/10.1103/physrevd.59.064005
    19 https://doi.org/10.1103/physrevd.72.021701
    20 https://doi.org/10.1103/physrevd.89.084001
    21 https://doi.org/10.1103/physrevlett.109.160401
    22 https://doi.org/10.1103/physrevlett.11.237
    23 https://doi.org/10.1103/physrevlett.69.1849
    24 https://doi.org/10.1103/physrevlett.72.183
    25 https://doi.org/10.1103/physrevlett.93.171102
    26 https://doi.org/10.1103/physrevlett.95.071101
    27 https://doi.org/10.1103/revmodphys.21.447
    28 https://doi.org/10.4310/atmp.2004.v8.n4.a3
    29 schema:datePublished 2018-07
    30 schema:datePublishedReg 2018-07-01
    31 schema:description It was recently observed that Kerr-AdS metrics with negative mass can describe smooth spacetimes that have a region within which naked closed time-like curves can arise, bounded by a velocity of light surface. Such spacetimes are sometimes known as time machines. In this paper we study the BPS limit of these metrics, and find that the mass and angular momenta become discretised. The completeness of the spacetime also requires that the asymptotic time coordinate be periodic, with precisely the same period as that which arises naturally for the global AdS, viewed as a hyperboliod in one extra dimension, in which the time machine spacetime is immersed. For the case of equal angular momenta in odd dimensions, we construct the Killing spinors explicitly, and show they are consistent with the global structure. Thus in examples where the solutions can be embedded in gauged supergravity, they will be supersymmetric. We also compare the global structure of the BPS AdS3 time machine with the BTZ black hole, and show that the global structure allows two different supersymmetric limits.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N05593193f7ae4062844eeac1e5d45625
    36 N6d0f937257804aa3b6024036e1a695eb
    37 sg:journal.1052482
    38 schema:name BPS Kerr-AdS time machines
    39 schema:pagination 88
    40 schema:productId N70686f67bb63433fb2c141a13def8316
    41 N789b50a486e342e6bfe17fed605ee68a
    42 N7ce1f271d1e142db9fbd5b19923e25e8
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105556239
    44 https://doi.org/10.1007/jhep07(2018)088
    45 schema:sdDatePublished 2019-04-10T21:54
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Ne3a47fff463e448e97fccde89855122c
    48 schema:url http://link.springer.com/10.1007/JHEP07(2018)088
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N05593193f7ae4062844eeac1e5d45625 schema:issueNumber 7
    53 rdf:type schema:PublicationIssue
    54 N6d0f937257804aa3b6024036e1a695eb schema:volumeNumber 2018
    55 rdf:type schema:PublicationVolume
    56 N70686f67bb63433fb2c141a13def8316 schema:name readcube_id
    57 schema:value a63e27b87f979f9f1342bb271f9a90b6937bcb1582e243040a0c0bb1251f4557
    58 rdf:type schema:PropertyValue
    59 N74d77879c4ee4580a5495fdf21b1a95e rdf:first sg:person.012222536305.19
    60 rdf:rest N7c296e521f084f11a56e97c74ae2855f
    61 N789b50a486e342e6bfe17fed605ee68a schema:name doi
    62 schema:value 10.1007/jhep07(2018)088
    63 rdf:type schema:PropertyValue
    64 N7c296e521f084f11a56e97c74ae2855f rdf:first sg:person.013530354055.83
    65 rdf:rest Na2f56de6da6b49b5bad81804b7983c58
    66 N7ce1f271d1e142db9fbd5b19923e25e8 schema:name dimensions_id
    67 schema:value pub.1105556239
    68 rdf:type schema:PropertyValue
    69 Na2f56de6da6b49b5bad81804b7983c58 rdf:first sg:person.012136555175.11
    70 rdf:rest Nb00d8a778c444409a968927be78e61db
    71 Nb00d8a778c444409a968927be78e61db rdf:first sg:person.07512552121.35
    72 rdf:rest rdf:nil
    73 Ne3a47fff463e448e97fccde89855122c schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Chemical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Physical Chemistry (incl. Structural)
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1052482 schema:issn 1029-8479
    82 1126-6708
    83 schema:name Journal of High Energy Physics
    84 rdf:type schema:Periodical
    85 sg:person.012136555175.11 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
    86 schema:familyName
    87 schema:givenName H.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11
    89 rdf:type schema:Person
    90 sg:person.012222536305.19 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    91 schema:familyName Cvetič
    92 schema:givenName M.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19
    94 rdf:type schema:Person
    95 sg:person.013530354055.83 schema:affiliation https://www.grid.ac/institutes/grid.20513.35
    96 schema:familyName Geng
    97 schema:givenName Wei-Jian
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530354055.83
    99 rdf:type schema:Person
    100 sg:person.07512552121.35 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    101 schema:familyName Pope
    102 schema:givenName C. N.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35
    104 rdf:type schema:Person
    105 sg:pub.10.1007/bf03399503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101127207
    106 https://doi.org/10.1007/bf03399503
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1088/1126-6708/2001/02/031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038749315
    109 https://doi.org/10.1088/1126-6708/2001/02/031
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1088/1126-6708/2009/07/082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000242844
    112 https://doi.org/10.1088/1126-6708/2009/07/082
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0003-4916(86)90186-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027947577
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.geomphys.2004.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048650603
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0370-2693(01)00181-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005137910
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/s0370-2693(96)01460-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029162200
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/s0550-3213(00)00335-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052260968
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/s0550-3213(03)00484-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018625528
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1088/0264-9381/16/1/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021985376
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1088/0264-9381/16/11/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002539546
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1088/0264-9381/17/20/305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029888988
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1088/0264-9381/22/9/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036283666
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1088/1361-6382/aa66d5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084600833
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physrevd.59.064005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026311803
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrevd.72.021701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038110578
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physrevd.89.084001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001808711
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevlett.109.160401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032385122
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.11.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760845
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrevlett.69.1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053240501
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physrevlett.72.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038406054
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physrevlett.93.171102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019783588
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrevlett.95.071101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007978307
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/revmodphys.21.447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042483490
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.4310/atmp.2004.v8.n4.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457124
    157 rdf:type schema:CreativeWork
    158 https://www.grid.ac/institutes/grid.20513.35 schema:alternateName Beijing Normal University
    159 schema:name Department of Physics, Beijing Normal University, 100875, Beijing, China
    160 rdf:type schema:Organization
    161 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    162 schema:name Department of Physics and Astronomy, University of Pennsylvania, 19104, Philadelphia, PA, U.S.A.
    163 Department of Physics, Beijing Normal University, 100875, Beijing, China
    164 rdf:type schema:Organization
    165 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
    166 schema:name Department of Physics, Tianjin University, 300350, Tianjin, China
    167 rdf:type schema:Organization
    168 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    169 schema:name DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.
    170 Department of Physics, Beijing Normal University, 100875, Beijing, China
    171 George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.
    172 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...