Holographic pump probe spectroscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07

AUTHORS

A. Bagrov, B. Craps, F. Galli, V. Keränen, E. Keski-Vakkuri, J. Zaanen

ABSTRACT

We study the non-linear response of a 2+1 dimensional holographic model with weak momentum relaxation and finite charge density to an oscillatory electric field pump pulse. Following the time evolution of one point functions after the pumping has ended, we find that deviations from thermality are well captured within the linear response theory. For electric pulses with a negligible zero frequency component the response approaches the instantaneously thermalizing form typical of holographic Vaidya models. We link this to the suppression of the amplitude of the quasinormal mode that governs the approach to equilibrium. In the large frequency limit, we are also able to show analytically that the holographic geometry takes the Vaidya form. A simple toy model captures these features of our holographic setup. Computing the out-of-equilibrium probe optical conductivity after the pump pulse, we similarly find that for high-frequency pulses the optical conductivity reaches its final equilibrium value effectively instantaneously. Pulses with significant DC components show exponential relaxation governed by twice the frequency of the vector quasinormal mode that governs the approach to equilibrium for the background solution. We explain this numerical factor in terms of a simple symmetry argument. More... »

PAGES

65

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep07(2018)065

DOI

http://dx.doi.org/10.1007/jhep07(2018)065

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105455761


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagrov", 
        "givenName": "A.", 
        "id": "sg:person.010435677267.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435677267.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vrije Universiteit Brussel", 
          "id": "https://www.grid.ac/institutes/grid.8767.e", 
          "name": [
            "Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB) and International Solvay Institutes, Pleinlaan 2, B-1050, Brussels, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Craps", 
        "givenName": "B.", 
        "id": "sg:person.011327546767.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327546767.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Perimeter Institute for Theoretical Physics, 31 Caroline Street, N2L 2Y5, North, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galli", 
        "givenName": "F.", 
        "id": "sg:person.011577665553.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577665553.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Physics, University of Helsinki, PO Box 64, FI-00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ker\u00e4nen", 
        "givenName": "V.", 
        "id": "sg:person.012462105237.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462105237.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Physics, University of Helsinki, PO Box 64, FI-00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keski-Vakkuri", 
        "givenName": "E.", 
        "id": "sg:person.010165751657.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010165751657.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leiden University", 
          "id": "https://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, PO Box 9506, NL-2300 RA, Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaanen", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep10(2014)172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000939017", 
          "https://doi.org/10.1007/jhep10(2014)172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2014)172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000939017", 
          "https://doi.org/10.1007/jhep10(2014)172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2016)123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001941162", 
          "https://doi.org/10.1007/jhep07(2016)123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2016)123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001941162", 
          "https://doi.org/10.1007/jhep07(2016)123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.021015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001942688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.021015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001942688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.015301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003113306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.015301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003113306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.50.888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004535871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.50.888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004535871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2012)168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011730194", 
          "https://doi.org/10.1007/jhep07(2012)168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ppnp.2013.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016904830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2016)014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017221149", 
          "https://doi.org/10.1007/jhep02(2016)014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.245116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019297493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.245116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019297493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.071602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020706555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.071602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020706555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2014)181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022784343", 
          "https://doi.org/10.1007/jhep04(2014)181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.126002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025249905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.126002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025249905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2015)146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027725656", 
          "https://doi.org/10.1007/jhep07(2015)146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2015)146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027725656", 
          "https://doi.org/10.1007/jhep07(2015)146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031326231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.111601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031326231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/72/12/126001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031945119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/72/12/126001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031945119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2013)026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032462298", 
          "https://doi.org/10.1007/jhep09(2013)026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2016)008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033970315", 
          "https://doi.org/10.1007/jhep10(2016)008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2016)008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033970315", 
          "https://doi.org/10.1007/jhep10(2016)008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2010)050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035190317", 
          "https://doi.org/10.1007/jhep07(2010)050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2010)050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035190317", 
          "https://doi.org/10.1007/jhep07(2010)050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018732.2016.1194044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038616495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039267958", 
          "https://doi.org/10.1007/jhep01(2015)084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.211601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041642776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.211601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041642776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.086003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042942274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.086003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042942274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.201602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043788080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.201602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043788080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045016085", 
          "https://doi.org/10.1038/nphys3265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045867629", 
          "https://doi.org/10.1007/jhep05(2014)101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045867629", 
          "https://doi.org/10.1007/jhep05(2014)101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046581573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046581573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2014)086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049223020", 
          "https://doi.org/10.1007/jhep07(2014)086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2014)040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050550770", 
          "https://doi.org/10.1007/jhep04(2014)040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2012)054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051190038", 
          "https://doi.org/10.1007/jhep05(2012)054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2015)090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054508088", 
          "https://doi.org/10.1007/jhep09(2015)090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2015)090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054508088", 
          "https://doi.org/10.1007/jhep09(2015)090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/pt.3.1717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058141478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.93.121901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060713044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.93.121901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060713044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1402-4896/aa5b6c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083809750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.95.046014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.95.046014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2017)009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517129", 
          "https://doi.org/10.1007/jhep04(2017)009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2017)126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091397215", 
          "https://doi.org/10.1007/jhep08(2017)126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511846373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098736177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.086005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103208673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.086005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103208673"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "We study the non-linear response of a 2+1 dimensional holographic model with weak momentum relaxation and finite charge density to an oscillatory electric field pump pulse. Following the time evolution of one point functions after the pumping has ended, we find that deviations from thermality are well captured within the linear response theory. For electric pulses with a negligible zero frequency component the response approaches the instantaneously thermalizing form typical of holographic Vaidya models. We link this to the suppression of the amplitude of the quasinormal mode that governs the approach to equilibrium. In the large frequency limit, we are also able to show analytically that the holographic geometry takes the Vaidya form. A simple toy model captures these features of our holographic setup. Computing the out-of-equilibrium probe optical conductivity after the pump pulse, we similarly find that for high-frequency pulses the optical conductivity reaches its final equilibrium value effectively instantaneously. Pulses with significant DC components show exponential relaxation governed by twice the frequency of the vector quasinormal mode that governs the approach to equilibrium for the background solution. We explain this numerical factor in terms of a simple symmetry argument.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep07(2018)065", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2018"
      }
    ], 
    "name": "Holographic pump probe spectroscopy", 
    "pagination": "65", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "57d9507ae799c7961b9950f9ce13068e8d6fa38c81a60dc70383257e8d006e08"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep07(2018)065"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105455761"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep07(2018)065", 
      "https://app.dimensions.ai/details/publication/pub.1105455761"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/JHEP07(2018)065"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)065'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)065'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)065'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2018)065'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep07(2018)065 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N3ccd0a9f1d3e441bacd746c34fc637ef
4 schema:citation sg:pub.10.1007/jhep01(2015)084
5 sg:pub.10.1007/jhep02(2016)014
6 sg:pub.10.1007/jhep04(2014)040
7 sg:pub.10.1007/jhep04(2014)181
8 sg:pub.10.1007/jhep04(2017)009
9 sg:pub.10.1007/jhep05(2012)054
10 sg:pub.10.1007/jhep05(2014)101
11 sg:pub.10.1007/jhep07(2010)050
12 sg:pub.10.1007/jhep07(2012)168
13 sg:pub.10.1007/jhep07(2014)086
14 sg:pub.10.1007/jhep07(2015)146
15 sg:pub.10.1007/jhep07(2016)123
16 sg:pub.10.1007/jhep08(2017)126
17 sg:pub.10.1007/jhep09(2013)026
18 sg:pub.10.1007/jhep09(2015)090
19 sg:pub.10.1007/jhep10(2014)172
20 sg:pub.10.1007/jhep10(2016)008
21 sg:pub.10.1038/nphys3265
22 https://doi.org/10.1016/j.ppnp.2013.11.001
23 https://doi.org/10.1017/cbo9780511846373
24 https://doi.org/10.1063/pt.3.1717
25 https://doi.org/10.1080/00018732.2016.1194044
26 https://doi.org/10.1088/0034-4885/72/12/126001
27 https://doi.org/10.1088/1402-4896/aa5b6c
28 https://doi.org/10.1103/physrevb.89.125123
29 https://doi.org/10.1103/physrevb.89.245116
30 https://doi.org/10.1103/physrevd.88.086003
31 https://doi.org/10.1103/physrevd.88.126002
32 https://doi.org/10.1103/physrevd.93.121901
33 https://doi.org/10.1103/physrevd.95.046014
34 https://doi.org/10.1103/physrevd.97.086005
35 https://doi.org/10.1103/physreve.50.888
36 https://doi.org/10.1103/physrevlett.102.211601
37 https://doi.org/10.1103/physrevlett.110.015301
38 https://doi.org/10.1103/physrevlett.111.201602
39 https://doi.org/10.1103/physrevlett.112.071602
40 https://doi.org/10.1103/physrevlett.94.111601
41 https://doi.org/10.1103/physrevx.5.021015
42 schema:datePublished 2018-07
43 schema:datePublishedReg 2018-07-01
44 schema:description We study the non-linear response of a 2+1 dimensional holographic model with weak momentum relaxation and finite charge density to an oscillatory electric field pump pulse. Following the time evolution of one point functions after the pumping has ended, we find that deviations from thermality are well captured within the linear response theory. For electric pulses with a negligible zero frequency component the response approaches the instantaneously thermalizing form typical of holographic Vaidya models. We link this to the suppression of the amplitude of the quasinormal mode that governs the approach to equilibrium. In the large frequency limit, we are also able to show analytically that the holographic geometry takes the Vaidya form. A simple toy model captures these features of our holographic setup. Computing the out-of-equilibrium probe optical conductivity after the pump pulse, we similarly find that for high-frequency pulses the optical conductivity reaches its final equilibrium value effectively instantaneously. Pulses with significant DC components show exponential relaxation governed by twice the frequency of the vector quasinormal mode that governs the approach to equilibrium for the background solution. We explain this numerical factor in terms of a simple symmetry argument.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N109070fc92cc4af0ad946ef754134b4b
49 N405aec8354f3470b83d996fe95975742
50 sg:journal.1052482
51 schema:name Holographic pump probe spectroscopy
52 schema:pagination 65
53 schema:productId N67f37d7f4c2b4b85b4728aa48c718e5b
54 N7fa97c9dd7c64b37b76c82330348de11
55 Nedad94036ac545348e1480f36285683d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105455761
57 https://doi.org/10.1007/jhep07(2018)065
58 schema:sdDatePublished 2019-04-11T00:31
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nafa18177bcf6453d92aa2c6ee99ed364
61 schema:url http://link.springer.com/10.1007/JHEP07(2018)065
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N109070fc92cc4af0ad946ef754134b4b schema:volumeNumber 2018
66 rdf:type schema:PublicationVolume
67 N1ee8d4bb910f4c0d810f14d62323d2f7 rdf:first N5df2724754e74437aebd183d7d2cf32b
68 rdf:rest rdf:nil
69 N376431ffd23b44eeafef5cf4aee74b00 rdf:first sg:person.011577665553.32
70 rdf:rest N9fb956277d7c47aeb601c3d09e1e2107
71 N3ccd0a9f1d3e441bacd746c34fc637ef rdf:first sg:person.010435677267.78
72 rdf:rest N59d3b7c0e7a34f96ada2dacb1450855d
73 N405aec8354f3470b83d996fe95975742 schema:issueNumber 7
74 rdf:type schema:PublicationIssue
75 N59d3b7c0e7a34f96ada2dacb1450855d rdf:first sg:person.011327546767.08
76 rdf:rest N376431ffd23b44eeafef5cf4aee74b00
77 N5df2724754e74437aebd183d7d2cf32b schema:affiliation https://www.grid.ac/institutes/grid.5132.5
78 schema:familyName Zaanen
79 schema:givenName J.
80 rdf:type schema:Person
81 N67f37d7f4c2b4b85b4728aa48c718e5b schema:name doi
82 schema:value 10.1007/jhep07(2018)065
83 rdf:type schema:PropertyValue
84 N7fa97c9dd7c64b37b76c82330348de11 schema:name readcube_id
85 schema:value 57d9507ae799c7961b9950f9ce13068e8d6fa38c81a60dc70383257e8d006e08
86 rdf:type schema:PropertyValue
87 N9fb956277d7c47aeb601c3d09e1e2107 rdf:first sg:person.012462105237.47
88 rdf:rest Nc6b975b08ae2451ab2fad06cc17f6ef4
89 Nafa18177bcf6453d92aa2c6ee99ed364 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nc6b975b08ae2451ab2fad06cc17f6ef4 rdf:first sg:person.010165751657.11
92 rdf:rest N1ee8d4bb910f4c0d810f14d62323d2f7
93 Nedad94036ac545348e1480f36285683d schema:name dimensions_id
94 schema:value pub.1105455761
95 rdf:type schema:PropertyValue
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
100 schema:name Optical Physics
101 rdf:type schema:DefinedTerm
102 sg:journal.1052482 schema:issn 1029-8479
103 1126-6708
104 schema:name Journal of High Energy Physics
105 rdf:type schema:Periodical
106 sg:person.010165751657.11 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
107 schema:familyName Keski-Vakkuri
108 schema:givenName E.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010165751657.11
110 rdf:type schema:Person
111 sg:person.010435677267.78 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
112 schema:familyName Bagrov
113 schema:givenName A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435677267.78
115 rdf:type schema:Person
116 sg:person.011327546767.08 schema:affiliation https://www.grid.ac/institutes/grid.8767.e
117 schema:familyName Craps
118 schema:givenName B.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327546767.08
120 rdf:type schema:Person
121 sg:person.011577665553.32 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
122 schema:familyName Galli
123 schema:givenName F.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577665553.32
125 rdf:type schema:Person
126 sg:person.012462105237.47 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
127 schema:familyName Keränen
128 schema:givenName V.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012462105237.47
130 rdf:type schema:Person
131 sg:pub.10.1007/jhep01(2015)084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039267958
132 https://doi.org/10.1007/jhep01(2015)084
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/jhep02(2016)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017221149
135 https://doi.org/10.1007/jhep02(2016)014
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/jhep04(2014)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550770
138 https://doi.org/10.1007/jhep04(2014)040
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/jhep04(2014)181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022784343
141 https://doi.org/10.1007/jhep04(2014)181
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/jhep04(2017)009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517129
144 https://doi.org/10.1007/jhep04(2017)009
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/jhep05(2012)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051190038
147 https://doi.org/10.1007/jhep05(2012)054
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/jhep05(2014)101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045867629
150 https://doi.org/10.1007/jhep05(2014)101
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/jhep07(2010)050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035190317
153 https://doi.org/10.1007/jhep07(2010)050
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/jhep07(2012)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011730194
156 https://doi.org/10.1007/jhep07(2012)168
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/jhep07(2014)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049223020
159 https://doi.org/10.1007/jhep07(2014)086
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/jhep07(2015)146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027725656
162 https://doi.org/10.1007/jhep07(2015)146
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/jhep07(2016)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001941162
165 https://doi.org/10.1007/jhep07(2016)123
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/jhep08(2017)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091397215
168 https://doi.org/10.1007/jhep08(2017)126
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/jhep09(2013)026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032462298
171 https://doi.org/10.1007/jhep09(2013)026
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/jhep09(2015)090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054508088
174 https://doi.org/10.1007/jhep09(2015)090
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/jhep10(2014)172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000939017
177 https://doi.org/10.1007/jhep10(2014)172
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/jhep10(2016)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033970315
180 https://doi.org/10.1007/jhep10(2016)008
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nphys3265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045016085
183 https://doi.org/10.1038/nphys3265
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.ppnp.2013.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016904830
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1017/cbo9780511846373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098736177
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/pt.3.1717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058141478
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/00018732.2016.1194044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038616495
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1088/0034-4885/72/12/126001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031945119
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/1402-4896/aa5b6c schema:sameAs https://app.dimensions.ai/details/publication/pub.1083809750
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.89.125123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046581573
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.89.245116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019297493
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevd.88.086003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042942274
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevd.88.126002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025249905
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevd.93.121901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060713044
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevd.95.046014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083935533
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevd.97.086005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103208673
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physreve.50.888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004535871
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.102.211601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041642776
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.110.015301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003113306
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.111.201602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043788080
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.112.071602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020706555
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.94.111601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031326231
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevx.5.021015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001942688
224 rdf:type schema:CreativeWork
225 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
226 schema:name Perimeter Institute for Theoretical Physics, 31 Caroline Street, N2L 2Y5, North, ON, Canada
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.5132.5 schema:alternateName Leiden University
229 schema:name Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, PO Box 9506, NL-2300 RA, Leiden, The Netherlands
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
232 schema:name Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
235 schema:name Department of Physics, University of Helsinki, PO Box 64, FI-00014, Helsinki, Finland
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.8767.e schema:alternateName Vrije Universiteit Brussel
238 schema:name Theoretische Natuurkunde, Vrije Universiteit Brussel (VUB) and International Solvay Institutes, Pleinlaan 2, B-1050, Brussels, Belgium
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...