Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07

AUTHORS

Volker Braun, Mirjam Cvetič, Ron Donagi, Maximilian Poretschkin

ABSTRACT

We provide the first explicit example of Type IIB string theory compactification on a globally defined Calabi-Yau threefold with torsion which results in a four-dimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of ℤ2×ℤ2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of second cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the cfour-dimensional theory. More... »

PAGES

129

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep07(2017)129

DOI

http://dx.doi.org/10.1007/jhep07(2017)129

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090912997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Elsenstrasse 35, 12435, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braun", 
        "givenName": "Volker", 
        "id": "sg:person.015045014602.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045014602.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maribor", 
          "id": "https://www.grid.ac/institutes/grid.8647.d", 
          "name": [
            "Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A.", 
            "Department of Mathematics, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A.", 
            "Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska ulica 3, 2000, Maribor, Slovenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cveti\u010d", 
        "givenName": "Mirjam", 
        "id": "sg:person.012222536305.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Mathematics, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A.", 
            "Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Donagi", 
        "givenName": "Ron", 
        "id": "sg:person.0671771744.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671771744.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poretschkin", 
        "givenName": "Maximilian", 
        "id": "sg:person.016623656034.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623656034.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)80030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000672730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2014)125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002463020", 
          "https://doi.org/10.1007/jhep11(2014)125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2012.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005993474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2004.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007713099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2012)059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011863975", 
          "https://doi.org/10.1007/jhep09(2012)059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2011)113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012447877", 
          "https://doi.org/10.1007/jhep12(2011)113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2009.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013121123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015824654", 
          "https://doi.org/10.1007/jhep01(2015)142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2016)066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017111650", 
          "https://doi.org/10.1007/jhep02(2016)066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021525191", 
          "https://doi.org/10.1007/bfb0070570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021525191", 
          "https://doi.org/10.1007/bfb0070570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2015.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021588793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2015.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021588793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2014)132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023564117", 
          "https://doi.org/10.1007/jhep08(2014)132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0393-0440(94)00048-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024216178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2014)156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025834081", 
          "https://doi.org/10.1007/jhep12(2014)156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2011)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026650730", 
          "https://doi.org/10.1007/jhep09(2011)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/12/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028616415", 
          "https://doi.org/10.1088/1126-6708/1998/12/025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2015)029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032255493", 
          "https://doi.org/10.1007/jhep06(2015)029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2015)029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032255493", 
          "https://doi.org/10.1007/jhep06(2015)029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2014)068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042903997", 
          "https://doi.org/10.1007/jhep12(2014)068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/10/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048913636", 
          "https://doi.org/10.1088/1126-6708/2007/10/022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/jams829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059342438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2372709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/ajm.2001.v5.n1.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2017)156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090324346", 
          "https://doi.org/10.1007/jhep06(2017)156"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "We provide the first explicit example of Type IIB string theory compactification on a globally defined Calabi-Yau threefold with torsion which results in a four-dimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of \u21242\u00d7\u21242. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of second cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the cfour-dimensional theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep07(2017)129", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "name": "Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries", 
    "pagination": "129", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7cc4188b5fb4a0643c87258da727dc591c43c7ba73ccafa5f77155cc6c36b245"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep07(2017)129"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090912997"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep07(2017)129", 
      "https://app.dimensions.ai/details/publication/pub.1090912997"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/JHEP07(2017)129"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)129'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)129'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)129'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)129'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep07(2017)129 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0036d4850dc948de98d43441ec9c9fa4
4 schema:citation sg:pub.10.1007/bfb0070570
5 sg:pub.10.1007/jhep01(2015)142
6 sg:pub.10.1007/jhep02(2016)066
7 sg:pub.10.1007/jhep06(2015)029
8 sg:pub.10.1007/jhep06(2017)156
9 sg:pub.10.1007/jhep08(2014)132
10 sg:pub.10.1007/jhep09(2011)110
11 sg:pub.10.1007/jhep09(2012)059
12 sg:pub.10.1007/jhep11(2014)125
13 sg:pub.10.1007/jhep12(2011)113
14 sg:pub.10.1007/jhep12(2014)068
15 sg:pub.10.1007/jhep12(2014)156
16 sg:pub.10.1088/1126-6708/1998/12/025
17 sg:pub.10.1088/1126-6708/2007/10/022
18 https://doi.org/10.1016/0393-0440(94)00048-9
19 https://doi.org/10.1016/j.geomphys.2009.04.004
20 https://doi.org/10.1016/j.nuclphysb.2004.06.009
21 https://doi.org/10.1016/j.nuclphysb.2012.08.008
22 https://doi.org/10.1016/j.nuclphysb.2015.07.011
23 https://doi.org/10.1016/s0550-3213(97)80030-2
24 https://doi.org/10.1090/jams829
25 https://doi.org/10.2307/2372709
26 https://doi.org/10.4310/ajm.2001.v5.n1.a5
27 schema:datePublished 2017-07
28 schema:datePublishedReg 2017-07-01
29 schema:description We provide the first explicit example of Type IIB string theory compactification on a globally defined Calabi-Yau threefold with torsion which results in a four-dimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of ℤ2×ℤ2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of second cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the cfour-dimensional theory.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N174c5db2c04f4ab2ba2ee9fa62b47953
34 Ne476d802b6784feb86ca34996ae8a3bc
35 sg:journal.1052482
36 schema:name Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries
37 schema:pagination 129
38 schema:productId N3e28014a5626421382d6c7750b96909c
39 N48ea64375c98477b89e5ce9cb65a4fde
40 Nf701de4ee37f4efe9b83144faacbe28f
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090912997
42 https://doi.org/10.1007/jhep07(2017)129
43 schema:sdDatePublished 2019-04-10T19:04
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nb82c06bd18954b30b0aa49bffaaf8dc1
46 schema:url http://link.springer.com/10.1007/JHEP07(2017)129
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0036d4850dc948de98d43441ec9c9fa4 rdf:first sg:person.015045014602.90
51 rdf:rest N5c720dc685d14f9fab0d244e50d312d5
52 N174c5db2c04f4ab2ba2ee9fa62b47953 schema:volumeNumber 2017
53 rdf:type schema:PublicationVolume
54 N30c2556b246b4fb5a67550b19dcdf24a rdf:first sg:person.0671771744.02
55 rdf:rest N8ee9832b2f8a4d15a187df99361e90db
56 N3e28014a5626421382d6c7750b96909c schema:name dimensions_id
57 schema:value pub.1090912997
58 rdf:type schema:PropertyValue
59 N48ea64375c98477b89e5ce9cb65a4fde schema:name readcube_id
60 schema:value 7cc4188b5fb4a0643c87258da727dc591c43c7ba73ccafa5f77155cc6c36b245
61 rdf:type schema:PropertyValue
62 N5c720dc685d14f9fab0d244e50d312d5 rdf:first sg:person.012222536305.19
63 rdf:rest N30c2556b246b4fb5a67550b19dcdf24a
64 N69f8f6db920143b6af8a8f7172e63f1d schema:name Elsenstrasse 35, 12435, Berlin, Germany
65 rdf:type schema:Organization
66 N8ee9832b2f8a4d15a187df99361e90db rdf:first sg:person.016623656034.08
67 rdf:rest rdf:nil
68 Nb82c06bd18954b30b0aa49bffaaf8dc1 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Ne476d802b6784feb86ca34996ae8a3bc schema:issueNumber 7
71 rdf:type schema:PublicationIssue
72 Nf701de4ee37f4efe9b83144faacbe28f schema:name doi
73 schema:value 10.1007/jhep07(2017)129
74 rdf:type schema:PropertyValue
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1052482 schema:issn 1029-8479
82 1126-6708
83 schema:name Journal of High Energy Physics
84 rdf:type schema:Periodical
85 sg:person.012222536305.19 schema:affiliation https://www.grid.ac/institutes/grid.8647.d
86 schema:familyName Cvetič
87 schema:givenName Mirjam
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19
89 rdf:type schema:Person
90 sg:person.015045014602.90 schema:affiliation N69f8f6db920143b6af8a8f7172e63f1d
91 schema:familyName Braun
92 schema:givenName Volker
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045014602.90
94 rdf:type schema:Person
95 sg:person.016623656034.08 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
96 schema:familyName Poretschkin
97 schema:givenName Maximilian
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623656034.08
99 rdf:type schema:Person
100 sg:person.0671771744.02 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
101 schema:familyName Donagi
102 schema:givenName Ron
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671771744.02
104 rdf:type schema:Person
105 sg:pub.10.1007/bfb0070570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021525191
106 https://doi.org/10.1007/bfb0070570
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/jhep01(2015)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015824654
109 https://doi.org/10.1007/jhep01(2015)142
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/jhep02(2016)066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017111650
112 https://doi.org/10.1007/jhep02(2016)066
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/jhep06(2015)029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032255493
115 https://doi.org/10.1007/jhep06(2015)029
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/jhep06(2017)156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090324346
118 https://doi.org/10.1007/jhep06(2017)156
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/jhep08(2014)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023564117
121 https://doi.org/10.1007/jhep08(2014)132
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/jhep09(2011)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026650730
124 https://doi.org/10.1007/jhep09(2011)110
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/jhep09(2012)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011863975
127 https://doi.org/10.1007/jhep09(2012)059
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/jhep11(2014)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002463020
130 https://doi.org/10.1007/jhep11(2014)125
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/jhep12(2011)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012447877
133 https://doi.org/10.1007/jhep12(2011)113
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/jhep12(2014)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042903997
136 https://doi.org/10.1007/jhep12(2014)068
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/jhep12(2014)156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025834081
139 https://doi.org/10.1007/jhep12(2014)156
140 rdf:type schema:CreativeWork
141 sg:pub.10.1088/1126-6708/1998/12/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028616415
142 https://doi.org/10.1088/1126-6708/1998/12/025
143 rdf:type schema:CreativeWork
144 sg:pub.10.1088/1126-6708/2007/10/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048913636
145 https://doi.org/10.1088/1126-6708/2007/10/022
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0393-0440(94)00048-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024216178
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.geomphys.2009.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013121123
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.nuclphysb.2004.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007713099
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.nuclphysb.2012.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005993474
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.nuclphysb.2015.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021588793
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0550-3213(97)80030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672730
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1090/jams829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059342438
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2307/2372709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899342
162 rdf:type schema:CreativeWork
163 https://doi.org/10.4310/ajm.2001.v5.n1.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456331
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
166 schema:name Department of Mathematics, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A.
167 Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A.
168 rdf:type schema:Organization
169 https://www.grid.ac/institutes/grid.8647.d schema:alternateName University of Maribor
170 schema:name Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska ulica 3, 2000, Maribor, Slovenia
171 Department of Mathematics, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A.
172 Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, 19104, Philadelphia, PA, U.S.A.
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...