DC conductivities with momentum dissipation in Horndeski theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07

AUTHORS

Wei-Jian Jiang, Hai-Shan Liu, H. Lü, C. N. Pope

ABSTRACT

In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentum dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also. More... »

PAGES

84

References to SciGraph publications

  • 2012-11. Further evidence for lattice-induced scaling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-10. Criticality in Einstein–Gauss–Bonnet gravity: gravity without graviton in THE EUROPEAN PHYSICAL JOURNAL C
  • 2015-11. Black hole entropy and viscosity bound in Horndeski gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06. General relativity and the cuprates in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05. A simple holographic model of momentum relaxation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-01. DC conductivity of magnetised holographic matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-06. Novel metals and insulators from holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01. The thermoelectric properties of inhomogeneous holographic lattices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-04. Effective holographic theories of momentum relaxation and violation of conductivity bound in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04. Holographic Q-lattices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02. Holographic superconductor on Q-lattice in JOURNAL OF HIGH ENERGY PHYSICS
  • 1974-09. Second-order scalar-tensor field equations in a four-dimensional space in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2013-11. Holographic lattice in Einstein-Maxwell-dilaton gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07. Optical conductivity with holographic lattices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04. DC conductivities from non-relativistic scaling geometries with momentum dissipation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-11. Thermoelectric DC conductivities from black hole horizons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-10. Thermoelectric DC conductivities and Stokes flows on black hole horizons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11. Linear and quadratic in temperature resistivity from holography in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep07(2017)084

    DOI

    http://dx.doi.org/10.1007/jhep07(2017)084

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090745672


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Zhejiang Institute of Modern Physics, Zhejiang University, 310058, Hangzhou, China", 
                "Ningbo Institute of Technology, Zhejiang University, 315100, Ningbo, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Wei-Jian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Texas A&M University", 
              "id": "https://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China", 
                "George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Hai-Shan", 
            "id": "sg:person.010047677665.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Normal University", 
              "id": "https://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00fc", 
            "givenName": "H.", 
            "id": "sg:person.012136555175.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.", 
                "DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pope", 
            "givenName": "C. N.", 
            "id": "sg:person.07512552121.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep02(2015)059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000343725", 
              "https://doi.org/10.1007/jhep02(2015)059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2016)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000744276", 
              "https://doi.org/10.1007/jhep01(2016)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2012)102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001718026", 
              "https://doi.org/10.1007/jhep11(2012)102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-conmatphys-020911-125141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002820683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2014)007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002965764", 
              "https://doi.org/10.1007/jhep06(2014)007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.084050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005454729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.084050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005454729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007995263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007995263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.106004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011244624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.106004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011244624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011730194", 
              "https://doi.org/10.1007/jhep07(2012)168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012324837", 
              "https://doi.org/10.1007/jhep06(2013)087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/26/22/224002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014864374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/26/22/224002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014864374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.084038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015510673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.084038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015510673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.025023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016142992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.025023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016142992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2014)081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016733407", 
              "https://doi.org/10.1007/jhep11(2014)081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01807638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017819398", 
              "https://doi.org/10.1007/bf01807638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01807638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017819398", 
              "https://doi.org/10.1007/bf01807638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2015)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019950563", 
              "https://doi.org/10.1007/jhep10(2015)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.026005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022207912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.026005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022207912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/26/19/195011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025274811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/26/19/195011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025274811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027640290", 
              "https://doi.org/10.1007/jhep11(2015)176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-016-4389-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035287872", 
              "https://doi.org/10.1140/epjc/s10052-016-4389-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-016-4389-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035287872", 
              "https://doi.org/10.1140/epjc/s10052-016-4389-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2016)122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039828696", 
              "https://doi.org/10.1007/jhep04(2016)122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.024037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041546546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.024037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041546546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2013)006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044422874", 
              "https://doi.org/10.1007/jhep11(2013)006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.251602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045777706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.251602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045777706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045867629", 
              "https://doi.org/10.1007/jhep05(2014)101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045867629", 
              "https://doi.org/10.1007/jhep05(2014)101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050482353", 
              "https://doi.org/10.1007/jhep01(2015)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050550770", 
              "https://doi.org/10.1007/jhep04(2014)040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054508105", 
              "https://doi.org/10.1007/jhep11(2016)128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054508105", 
              "https://doi.org/10.1007/jhep11(2016)128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1665613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057743693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.92.121901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.92.121901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.044030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.044030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.221601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.221601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084517129", 
              "https://doi.org/10.1007/jhep04(2017)009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139942492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098737900"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07", 
        "datePublishedReg": "2017-07-01", 
        "description": "In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentum dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point \u03b1+\u03b3\u039b = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep07(2017)084", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "name": "DC conductivities with momentum dissipation in Horndeski theories", 
        "pagination": "84", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c56aa70a266e36b4b4cad136123247e3df97fece2e4b9ae5c9c0fe88e40ca4da"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep07(2017)084"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090745672"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep07(2017)084", 
          "https://app.dimensions.ai/details/publication/pub.1090745672"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000484.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP07(2017)084"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)084'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)084'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)084'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2017)084'


     

    This table displays all metadata directly associated to this object as RDF triples.

    216 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep07(2017)084 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2a144021e3fa4e17a86f4265d219f543
    4 schema:citation sg:pub.10.1007/bf01807638
    5 sg:pub.10.1007/jhep01(2015)035
    6 sg:pub.10.1007/jhep01(2016)113
    7 sg:pub.10.1007/jhep02(2015)059
    8 sg:pub.10.1007/jhep04(2014)040
    9 sg:pub.10.1007/jhep04(2016)122
    10 sg:pub.10.1007/jhep04(2017)009
    11 sg:pub.10.1007/jhep05(2014)101
    12 sg:pub.10.1007/jhep06(2013)087
    13 sg:pub.10.1007/jhep06(2014)007
    14 sg:pub.10.1007/jhep07(2012)168
    15 sg:pub.10.1007/jhep10(2015)103
    16 sg:pub.10.1007/jhep11(2012)102
    17 sg:pub.10.1007/jhep11(2013)006
    18 sg:pub.10.1007/jhep11(2014)081
    19 sg:pub.10.1007/jhep11(2015)176
    20 sg:pub.10.1007/jhep11(2016)128
    21 sg:pub.10.1140/epjc/s10052-016-4389-x
    22 https://doi.org/10.1017/cbo9781139942492
    23 https://doi.org/10.1063/1.1665613
    24 https://doi.org/10.1088/0264-9381/26/19/195011
    25 https://doi.org/10.1088/0264-9381/26/22/224002
    26 https://doi.org/10.1103/physrevd.79.025023
    27 https://doi.org/10.1103/physrevd.79.064036
    28 https://doi.org/10.1103/physrevd.84.024037
    29 https://doi.org/10.1103/physrevd.88.106004
    30 https://doi.org/10.1103/physrevd.89.026005
    31 https://doi.org/10.1103/physrevd.89.084038
    32 https://doi.org/10.1103/physrevd.89.084050
    33 https://doi.org/10.1103/physrevd.92.121901
    34 https://doi.org/10.1103/physrevd.93.044030
    35 https://doi.org/10.1103/physrevd.93.061901
    36 https://doi.org/10.1103/physrevlett.114.251602
    37 https://doi.org/10.1103/physrevlett.115.221601
    38 https://doi.org/10.1146/annurev-conmatphys-020911-125141
    39 schema:datePublished 2017-07
    40 schema:datePublishedReg 2017-07-01
    41 schema:description In this paper, we consider two four-dimensional Horndeski-type gravity theories with scalar fields that give rise to solutions with momentum dissipation in the dual boundary theories. Firstly, we study Einstein-Maxwell theory with a Horndeski axion term and two additional free axions which are responsible for momentum dissipation. We construct static electrically charged AdS planar black hole solutions in this theory and calculate analytically the holographic DC conductivity of the dual field theory. We then generalize the results to include magnetic charge in the black hole solution. Secondly, we analyze Einstein-Maxwell theory with two Horndeski axions which are used for momentum dissipation. We obtain AdS planar black hole solutions in the theory and we calculate the holographic DC conductivity of the dual field theory. The theory has a critical point α+γΛ = 0, beyond which the kinetic terms of the Horndeski axions become ghost-like. The conductivity as a function of temperature behaves qualitatively like that of a conductor below the critical point, becoming semiconductor-like at the critical point. Beyond the critical point, the ghost-like nature of the Horndeski fields is associated with the onset of unphysical singular or negative conductivities. Some further generalisations of the above theories are considered also.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N374f98991a6947648a9a8180a5963421
    46 Ndd084f7a6807447daed3cd3f941ab1d1
    47 sg:journal.1052482
    48 schema:name DC conductivities with momentum dissipation in Horndeski theories
    49 schema:pagination 84
    50 schema:productId N7fa715ce36634f73a97451211a47256c
    51 Nd592abb364a0427b9503f535754beb5b
    52 Neb6fd5a23d3d4fe58f9e3fdb57613cb1
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090745672
    54 https://doi.org/10.1007/jhep07(2017)084
    55 schema:sdDatePublished 2019-04-10T21:30
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N2f4c12d59e1c4104bc38b7aee802b971
    58 schema:url http://link.springer.com/10.1007/JHEP07(2017)084
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N2a144021e3fa4e17a86f4265d219f543 rdf:first N96354031d1be48f1869412946d7b55e7
    63 rdf:rest N91faf64b49c5405f866bfe3a83bb8c98
    64 N2f4c12d59e1c4104bc38b7aee802b971 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N374f98991a6947648a9a8180a5963421 schema:volumeNumber 2017
    67 rdf:type schema:PublicationVolume
    68 N6d8668727e9044d996a9913c7cb22ff8 rdf:first sg:person.012136555175.11
    69 rdf:rest N92bcaf3cf3ef4719a7341c20d68ff12c
    70 N7fa715ce36634f73a97451211a47256c schema:name readcube_id
    71 schema:value c56aa70a266e36b4b4cad136123247e3df97fece2e4b9ae5c9c0fe88e40ca4da
    72 rdf:type schema:PropertyValue
    73 N91faf64b49c5405f866bfe3a83bb8c98 rdf:first sg:person.010047677665.03
    74 rdf:rest N6d8668727e9044d996a9913c7cb22ff8
    75 N92bcaf3cf3ef4719a7341c20d68ff12c rdf:first sg:person.07512552121.35
    76 rdf:rest rdf:nil
    77 N96354031d1be48f1869412946d7b55e7 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    78 schema:familyName Jiang
    79 schema:givenName Wei-Jian
    80 rdf:type schema:Person
    81 Nd592abb364a0427b9503f535754beb5b schema:name doi
    82 schema:value 10.1007/jhep07(2017)084
    83 rdf:type schema:PropertyValue
    84 Ndd084f7a6807447daed3cd3f941ab1d1 schema:issueNumber 7
    85 rdf:type schema:PublicationIssue
    86 Neb6fd5a23d3d4fe58f9e3fdb57613cb1 schema:name dimensions_id
    87 schema:value pub.1090745672
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Mathematical Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Pure Mathematics
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1052482 schema:issn 1029-8479
    96 1126-6708
    97 schema:name Journal of High Energy Physics
    98 rdf:type schema:Periodical
    99 sg:person.010047677665.03 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
    100 schema:familyName Liu
    101 schema:givenName Hai-Shan
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03
    103 rdf:type schema:Person
    104 sg:person.012136555175.11 schema:affiliation https://www.grid.ac/institutes/grid.20513.35
    105 schema:familyName
    106 schema:givenName H.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11
    108 rdf:type schema:Person
    109 sg:person.07512552121.35 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    110 schema:familyName Pope
    111 schema:givenName C. N.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35
    113 rdf:type schema:Person
    114 sg:pub.10.1007/bf01807638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017819398
    115 https://doi.org/10.1007/bf01807638
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep01(2015)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050482353
    118 https://doi.org/10.1007/jhep01(2015)035
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/jhep01(2016)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000744276
    121 https://doi.org/10.1007/jhep01(2016)113
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/jhep02(2015)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000343725
    124 https://doi.org/10.1007/jhep02(2015)059
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/jhep04(2014)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550770
    127 https://doi.org/10.1007/jhep04(2014)040
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep04(2016)122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039828696
    130 https://doi.org/10.1007/jhep04(2016)122
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep04(2017)009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517129
    133 https://doi.org/10.1007/jhep04(2017)009
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep05(2014)101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045867629
    136 https://doi.org/10.1007/jhep05(2014)101
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep06(2013)087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012324837
    139 https://doi.org/10.1007/jhep06(2013)087
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep06(2014)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002965764
    142 https://doi.org/10.1007/jhep06(2014)007
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep07(2012)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011730194
    145 https://doi.org/10.1007/jhep07(2012)168
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep10(2015)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019950563
    148 https://doi.org/10.1007/jhep10(2015)103
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep11(2012)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001718026
    151 https://doi.org/10.1007/jhep11(2012)102
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep11(2013)006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044422874
    154 https://doi.org/10.1007/jhep11(2013)006
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep11(2014)081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016733407
    157 https://doi.org/10.1007/jhep11(2014)081
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep11(2015)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027640290
    160 https://doi.org/10.1007/jhep11(2015)176
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep11(2016)128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054508105
    163 https://doi.org/10.1007/jhep11(2016)128
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1140/epjc/s10052-016-4389-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035287872
    166 https://doi.org/10.1140/epjc/s10052-016-4389-x
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1017/cbo9781139942492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098737900
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1063/1.1665613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743693
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1088/0264-9381/26/19/195011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025274811
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1088/0264-9381/26/22/224002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014864374
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1103/physrevd.79.025023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016142992
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physrevd.79.064036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007995263
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/physrevd.84.024037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041546546
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1103/physrevd.88.106004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011244624
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1103/physrevd.89.026005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022207912
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/physrevd.89.084038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015510673
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physrevd.89.084050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005454729
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physrevd.92.121901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060711295
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physrevd.93.044030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060711926
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/physrevd.93.061901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060712158
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1103/physrevlett.114.251602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045777706
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1103/physrevlett.115.221601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764531
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1146/annurev-conmatphys-020911-125141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002820683
    201 rdf:type schema:CreativeWork
    202 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    203 schema:name Ningbo Institute of Technology, Zhejiang University, 315100, Ningbo, China
    204 Zhejiang Institute of Modern Physics, Zhejiang University, 310058, Hangzhou, China
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.20513.35 schema:alternateName Beijing Normal University
    207 schema:name Department of Physics, Beijing Normal University, 100875, Beijing, China
    208 rdf:type schema:Organization
    209 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
    210 schema:name George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.
    211 Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China
    212 rdf:type schema:Organization
    213 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    214 schema:name DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.
    215 George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.
    216 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...