Spread of entanglement and causality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07-14

AUTHORS

Horacio Casini, Hong Liu, Márk Mezei

ABSTRACT

We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches. More... »

PAGES

77

References to SciGraph publications

  • 2015-09-17. Entanglement scrambling in 2d conformal field theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-10-15. Fast scramblers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-03. Time evolution of entanglement entropy from black hole interiors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-03-10. Localized shocks in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep07(2016)077

    DOI

    http://dx.doi.org/10.1007/jhep07(2016)077

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008906066


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Instituto Balseiro, Centro Atomico, Bustillo, 9500, Bariloche, Argentina", 
              "id": "http://www.grid.ac/institutes/grid.466813.e", 
              "name": [
                "Instituto Balseiro, Centro Atomico, Bustillo, 9500, Bariloche, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Casini", 
            "givenName": "Horacio", 
            "id": "sg:person.010647310175.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647310175.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, 02139, Cambridge, MA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, 02139, Cambridge, MA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Hong", 
            "id": "sg:person.0643534564.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643534564.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Princeton Center for Theoretical Science, Princeton University, Jadwin Hall, 08544, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Princeton Center for Theoretical Science, Princeton University, Jadwin Hall, 08544, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mezei", 
            "givenName": "M\u00e1rk", 
            "id": "sg:person.010123664173.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010123664173.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep03(2015)051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011152113", 
              "https://doi.org/10.1007/jhep03(2015)051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013450009", 
              "https://doi.org/10.1088/1126-6708/2008/10/065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2015)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018463765", 
              "https://doi.org/10.1007/jhep09(2015)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051990733", 
              "https://doi.org/10.1007/jhep05(2013)014"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-07-14", 
        "datePublishedReg": "2016-07-14", 
        "description": "We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep07(2016)077", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "causality constraints", 
          "geometric model", 
          "network construction", 
          "constraints", 
          "entropy", 
          "general proof", 
          "proof", 
          "tsunami velocity", 
          "speed", 
          "model", 
          "dimensions", 
          "initial state", 
          "system", 
          "multiple intervals", 
          "intricate results", 
          "significant part", 
          "parameter space", 
          "space", 
          "higher dimensions", 
          "construction", 
          "time evolution", 
          "evolution", 
          "entanglement entropy", 
          "global quench", 
          "quench", 
          "relativistic theory", 
          "theory", 
          "velocity", 
          "speed of light", 
          "light", 
          "free particle", 
          "particles", 
          "general dimensions", 
          "entanglement patterns", 
          "patterns", 
          "state", 
          "spacetime dimensions", 
          "spread of entanglement", 
          "spread", 
          "entanglement", 
          "normalized rate", 
          "rate", 
          "growth", 
          "holographic theories", 
          "importance of interactions", 
          "importance", 
          "interaction", 
          "body systems", 
          "intervals", 
          "variation", 
          "results", 
          "part", 
          "entanglement propagation", 
          "propagation", 
          "causality", 
          "arbitrary entanglement pattern", 
          "initial entanglement pattern", 
          "tensor network construction"
        ], 
        "name": "Spread of entanglement and causality", 
        "pagination": "77", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008906066"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep07(2016)077"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep07(2016)077", 
          "https://app.dimensions.ai/details/publication/pub.1008906066"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_710.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep07(2016)077"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2016)077'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2016)077'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2016)077'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2016)077'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      22 PREDICATES      87 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep07(2016)077 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N99c6f32e52d7406192920256c8a5d93f
    4 schema:citation sg:pub.10.1007/jhep03(2015)051
    5 sg:pub.10.1007/jhep05(2013)014
    6 sg:pub.10.1007/jhep09(2015)110
    7 sg:pub.10.1088/1126-6708/2008/10/065
    8 schema:datePublished 2016-07-14
    9 schema:datePublishedReg 2016-07-14
    10 schema:description We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N16a28bf582014eed8e82787790afd6ce
    15 N69de6aabcd054d2b992288205e837d90
    16 sg:journal.1052482
    17 schema:keywords arbitrary entanglement pattern
    18 body systems
    19 causality
    20 causality constraints
    21 constraints
    22 construction
    23 dimensions
    24 entanglement
    25 entanglement entropy
    26 entanglement patterns
    27 entanglement propagation
    28 entropy
    29 evolution
    30 free particle
    31 general dimensions
    32 general proof
    33 geometric model
    34 global quench
    35 growth
    36 higher dimensions
    37 holographic theories
    38 importance
    39 importance of interactions
    40 initial entanglement pattern
    41 initial state
    42 interaction
    43 intervals
    44 intricate results
    45 light
    46 model
    47 multiple intervals
    48 network construction
    49 normalized rate
    50 parameter space
    51 part
    52 particles
    53 patterns
    54 proof
    55 propagation
    56 quench
    57 rate
    58 relativistic theory
    59 results
    60 significant part
    61 space
    62 spacetime dimensions
    63 speed
    64 speed of light
    65 spread
    66 spread of entanglement
    67 state
    68 system
    69 tensor network construction
    70 theory
    71 time evolution
    72 tsunami velocity
    73 variation
    74 velocity
    75 schema:name Spread of entanglement and causality
    76 schema:pagination 77
    77 schema:productId N2a193163ff884e2aa0379e1f0119267c
    78 N9a3ad0350f744adea975ba3d8579ea95
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906066
    80 https://doi.org/10.1007/jhep07(2016)077
    81 schema:sdDatePublished 2021-12-01T19:36
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N7743b4a1e2c94ac689447a2add97a0c9
    84 schema:url https://doi.org/10.1007/jhep07(2016)077
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N06d78a10f93742de95033985844bcdab rdf:first sg:person.0643534564.87
    89 rdf:rest N30a55c761a594839bb6ceed73d5f0c7e
    90 N16a28bf582014eed8e82787790afd6ce schema:issueNumber 7
    91 rdf:type schema:PublicationIssue
    92 N2a193163ff884e2aa0379e1f0119267c schema:name dimensions_id
    93 schema:value pub.1008906066
    94 rdf:type schema:PropertyValue
    95 N30a55c761a594839bb6ceed73d5f0c7e rdf:first sg:person.010123664173.94
    96 rdf:rest rdf:nil
    97 N69de6aabcd054d2b992288205e837d90 schema:volumeNumber 2016
    98 rdf:type schema:PublicationVolume
    99 N7743b4a1e2c94ac689447a2add97a0c9 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N99c6f32e52d7406192920256c8a5d93f rdf:first sg:person.010647310175.27
    102 rdf:rest N06d78a10f93742de95033985844bcdab
    103 N9a3ad0350f744adea975ba3d8579ea95 schema:name doi
    104 schema:value 10.1007/jhep07(2016)077
    105 rdf:type schema:PropertyValue
    106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Physical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    111 rdf:type schema:DefinedTerm
    112 sg:journal.1052482 schema:issn 1029-8479
    113 1126-6708
    114 schema:name Journal of High Energy Physics
    115 schema:publisher Springer Nature
    116 rdf:type schema:Periodical
    117 sg:person.010123664173.94 schema:affiliation grid-institutes:grid.16750.35
    118 schema:familyName Mezei
    119 schema:givenName Márk
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010123664173.94
    121 rdf:type schema:Person
    122 sg:person.010647310175.27 schema:affiliation grid-institutes:grid.466813.e
    123 schema:familyName Casini
    124 schema:givenName Horacio
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647310175.27
    126 rdf:type schema:Person
    127 sg:person.0643534564.87 schema:affiliation grid-institutes:grid.116068.8
    128 schema:familyName Liu
    129 schema:givenName Hong
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643534564.87
    131 rdf:type schema:Person
    132 sg:pub.10.1007/jhep03(2015)051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011152113
    133 https://doi.org/10.1007/jhep03(2015)051
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep05(2013)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051990733
    136 https://doi.org/10.1007/jhep05(2013)014
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep09(2015)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018463765
    139 https://doi.org/10.1007/jhep09(2015)110
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1088/1126-6708/2008/10/065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013450009
    142 https://doi.org/10.1088/1126-6708/2008/10/065
    143 rdf:type schema:CreativeWork
    144 grid-institutes:grid.116068.8 schema:alternateName Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, 02139, Cambridge, MA, U.S.A.
    145 schema:name Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, 02139, Cambridge, MA, U.S.A.
    146 rdf:type schema:Organization
    147 grid-institutes:grid.16750.35 schema:alternateName Princeton Center for Theoretical Science, Princeton University, Jadwin Hall, 08544, Princeton, NJ, U.S.A.
    148 schema:name Princeton Center for Theoretical Science, Princeton University, Jadwin Hall, 08544, Princeton, NJ, U.S.A.
    149 rdf:type schema:Organization
    150 grid-institutes:grid.466813.e schema:alternateName Instituto Balseiro, Centro Atomico, Bustillo, 9500, Bariloche, Argentina
    151 schema:name Instituto Balseiro, Centro Atomico, Bustillo, 9500, Bariloche, Argentina
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...