On BMS invariance of gravitational scattering View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-07

AUTHORS

Andrew Strominger

ABSTRACT

BMS+ transformations act nontrivially on outgoing gravitational scattering data while preserving intrinsic structure at future null infinity (ℐ+). BMS− transformations similarly act on ingoing data at past null infinity (ℐ−). In this paper we apply — within a suitable finite neighborhood of the Minkowski vacuum — results of Christodoulou and Klainerman to link ℐ+ to ℐ− and thereby identify “diagonal” elements BMS0 of BMS+ × BMS−. We argue that BMS0 is a nontrivial infinite-dimensional symmetry of both classical gravitational scattering and the quantum gravity S-matrix. It implies the conservation of net accumulated energy flux at every angle on the conformal S2 at ℐ. The associated Ward identity is shown to relate S-matrix elements with and without soft gravitons. Finally, BMS0 is recast as a U(1) Kac-Moody symmetry and an expression for the Kac-Moody current is given in terms of a certain soft graviton operator on the boundary of ℐ. More... »

PAGES

152

References to SciGraph publications

  • 1970-06. Asymptotic conditions and infrared divergences in quantum electrodynamics in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2013-10. Spontaneous Lorentz violation in gauge theories in THE EUROPEAN PHYSICAL JOURNAL PLUS
  • 2011-12. BMS charge algebra in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10. Construction of an asymptotic S matrix for perturbative quantum gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-11. Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity in JOURNAL OF HIGH ENERGY PHYSICS
  • Journal

    TITLE

    Journal of High Energy Physics

    ISSUE

    7

    VOLUME

    2014

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep07(2014)152

    DOI

    http://dx.doi.org/10.1007/jhep07(2014)152

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038465745


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Center for the Fundamental Laws of Nature, Harvard University, 02138, Cambridge, MA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strominger", 
            "givenName": "Andrew", 
            "id": "sg:person.015635420025.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015635420025.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1098/rspa.1962.0206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003119155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1962.0161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005159035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.103006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018291397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.103006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018291397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.111103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022252666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.111103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022252666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2013)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022452306", 
              "https://doi.org/10.1007/jhep11(2013)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2011)105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022940014", 
              "https://doi.org/10.1007/jhep12(2011)105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023543410", 
              "https://doi.org/10.1007/jhep10(2013)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1981.0109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026480847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01066485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044474008", 
              "https://doi.org/10.1007/bf01066485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01066485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044474008", 
              "https://doi.org/10.1007/bf01066485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjp/i2013-13118-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050448994", 
              "https://doi.org/10.1140/epjp/i2013-13118-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.523863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058100883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.140.b516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.140.b516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060431866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.46.573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.46.573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139644167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098673332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7208/chicago/9780226870373.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099556543"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-07", 
        "datePublishedReg": "2014-07-01", 
        "description": "BMS+ transformations act nontrivially on outgoing gravitational scattering data while preserving intrinsic structure at future null infinity (\u2110+). BMS\u2212 transformations similarly act on ingoing data at past null infinity (\u2110\u2212). In this paper we apply \u2014 within a suitable finite neighborhood of the Minkowski vacuum \u2014 results of Christodoulou and Klainerman to link \u2110+ to \u2110\u2212 and thereby identify \u201cdiagonal\u201d elements BMS0 of BMS+ \u00d7 BMS\u2212. We argue that BMS0 is a nontrivial infinite-dimensional symmetry of both classical gravitational scattering and the quantum gravity S-matrix. It implies the conservation of net accumulated energy flux at every angle on the conformal S2 at \u2110. The associated Ward identity is shown to relate S-matrix elements with and without soft gravitons. Finally, BMS0 is recast as a U(1) Kac-Moody symmetry and an expression for the Kac-Moody current is given in terms of a certain soft graviton operator on the boundary of \u2110.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep07(2014)152", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "name": "On BMS invariance of gravitational scattering", 
        "pagination": "152", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b73bf1f713da060a403fcb4950016d9162c8e7558436694abfc690dad6b127b6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep07(2014)152"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038465745"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep07(2014)152", 
          "https://app.dimensions.ai/details/publication/pub.1038465745"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP07(2014)152"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2014)152'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2014)152'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2014)152'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2014)152'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep07(2014)152 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N162c6b0e7cc14be49725b392bf487ad8
    4 schema:citation sg:pub.10.1007/bf01066485
    5 sg:pub.10.1007/jhep10(2013)159
    6 sg:pub.10.1007/jhep11(2013)003
    7 sg:pub.10.1007/jhep12(2011)105
    8 sg:pub.10.1140/epjp/i2013-13118-9
    9 https://doi.org/10.1017/cbo9781139644167
    10 https://doi.org/10.1063/1.523863
    11 https://doi.org/10.1098/rspa.1962.0161
    12 https://doi.org/10.1098/rspa.1962.0206
    13 https://doi.org/10.1098/rspa.1981.0109
    14 https://doi.org/10.1103/physrev.140.b516
    15 https://doi.org/10.1103/physrevd.88.103006
    16 https://doi.org/10.1103/physrevlett.105.111103
    17 https://doi.org/10.1103/physrevlett.46.573
    18 https://doi.org/10.1103/physrevlett.67.1486
    19 https://doi.org/10.7208/chicago/9780226870373.001.0001
    20 schema:datePublished 2014-07
    21 schema:datePublishedReg 2014-07-01
    22 schema:description BMS+ transformations act nontrivially on outgoing gravitational scattering data while preserving intrinsic structure at future null infinity (ℐ+). BMS− transformations similarly act on ingoing data at past null infinity (ℐ−). In this paper we apply — within a suitable finite neighborhood of the Minkowski vacuum — results of Christodoulou and Klainerman to link ℐ+ to ℐ− and thereby identify “diagonal” elements BMS0 of BMS+ × BMS−. We argue that BMS0 is a nontrivial infinite-dimensional symmetry of both classical gravitational scattering and the quantum gravity S-matrix. It implies the conservation of net accumulated energy flux at every angle on the conformal S2 at ℐ. The associated Ward identity is shown to relate S-matrix elements with and without soft gravitons. Finally, BMS0 is recast as a U(1) Kac-Moody symmetry and an expression for the Kac-Moody current is given in terms of a certain soft graviton operator on the boundary of ℐ.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N4f6f55303e914897b709d2ebf5667083
    27 Ndac8a53ad5c647f2a837b9b1b47fefa6
    28 sg:journal.1052482
    29 schema:name On BMS invariance of gravitational scattering
    30 schema:pagination 152
    31 schema:productId N1b5c111fa1074dd88dd8dcd0c2213f90
    32 N1bbd0101be4347cdb585ef2343dc9118
    33 N211a1c4fffba4783878895cd51d50b74
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038465745
    35 https://doi.org/10.1007/jhep07(2014)152
    36 schema:sdDatePublished 2019-04-10T13:09
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N6d2987567ac445a8899f755e10bf3aec
    39 schema:url http://link.springer.com/10.1007/JHEP07(2014)152
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N162c6b0e7cc14be49725b392bf487ad8 rdf:first sg:person.015635420025.05
    44 rdf:rest rdf:nil
    45 N1b5c111fa1074dd88dd8dcd0c2213f90 schema:name readcube_id
    46 schema:value b73bf1f713da060a403fcb4950016d9162c8e7558436694abfc690dad6b127b6
    47 rdf:type schema:PropertyValue
    48 N1bbd0101be4347cdb585ef2343dc9118 schema:name doi
    49 schema:value 10.1007/jhep07(2014)152
    50 rdf:type schema:PropertyValue
    51 N211a1c4fffba4783878895cd51d50b74 schema:name dimensions_id
    52 schema:value pub.1038465745
    53 rdf:type schema:PropertyValue
    54 N4f6f55303e914897b709d2ebf5667083 schema:issueNumber 7
    55 rdf:type schema:PublicationIssue
    56 N6d2987567ac445a8899f755e10bf3aec schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Ndac8a53ad5c647f2a837b9b1b47fefa6 schema:volumeNumber 2014
    59 rdf:type schema:PublicationVolume
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Pure Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1052482 schema:issn 1029-8479
    67 1126-6708
    68 schema:name Journal of High Energy Physics
    69 rdf:type schema:Periodical
    70 sg:person.015635420025.05 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    71 schema:familyName Strominger
    72 schema:givenName Andrew
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015635420025.05
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf01066485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044474008
    76 https://doi.org/10.1007/bf01066485
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/jhep10(2013)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023543410
    79 https://doi.org/10.1007/jhep10(2013)159
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/jhep11(2013)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022452306
    82 https://doi.org/10.1007/jhep11(2013)003
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/jhep12(2011)105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022940014
    85 https://doi.org/10.1007/jhep12(2011)105
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1140/epjp/i2013-13118-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050448994
    88 https://doi.org/10.1140/epjp/i2013-13118-9
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1017/cbo9781139644167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098673332
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1063/1.523863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058100883
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1098/rspa.1962.0161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005159035
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1098/rspa.1962.0206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003119155
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1098/rspa.1981.0109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026480847
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1103/physrev.140.b516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431866
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrevd.88.103006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018291397
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1103/physrevlett.105.111103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022252666
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physrevlett.46.573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786222
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physrevlett.67.1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803108
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.7208/chicago/9780226870373.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099556543
    111 rdf:type schema:CreativeWork
    112 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    113 schema:name Center for the Fundamental Laws of Nature, Harvard University, 02138, Cambridge, MA, U.S.A.
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...