Entanglement entropy in all dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-22

AUTHORS

Samuel L. Braunstein, Saurya Das, S. Shankaranarayanan

ABSTRACT

It has long been conjectured that the entropy of quantum fields across boundaries scales as the boundary area. This conjecture has not been easy to test in spacetime dimensions greater than four because of divergences in the von Neumann entropy. Here we show that the Rényi entropy provides a convergent alternative, yielding a quantitative measure of entanglement between quantum field theoretic degrees of freedom inside and outside hypersurfaces. For the first time, we show that the entanglement entropy in higher dimensions is proportional to the higher dimensional area. We also show that the Rényi entropy diverges at specific values of the Rényi parameter q in each dimension, but this divergence can be tamed by introducing a mass to the quantum field. More... »

PAGES

130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep07(2013)130

DOI

http://dx.doi.org/10.1007/jhep07(2013)130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015835854


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science, University of York, Y010 5GH, York, U.K.", 
          "id": "http://www.grid.ac/institutes/grid.5685.e", 
          "name": [
            "Computer Science, University of York, Y010 5GH, York, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braunstein", 
        "givenName": "Samuel L.", 
        "id": "sg:person.0666766367.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Theoretical Physics Group, University of Lethbridge, 4401 University Drive, T1K 3 M4, Lethbridge, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.47609.3c", 
          "name": [
            "Theoretical Physics Group, University of Lethbridge, 4401 University Drive, T1K 3 M4, Lethbridge, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Saurya", 
        "id": "sg:person.011603045773.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011603045773.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics, Indian Institute of Science Education and Research, CET Campus, 695016, Thiruvananthapuram, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Physics, Indian Institute of Science Education and Research, CET Campus, 695016, Thiruvananthapuram, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shankaranarayanan", 
        "givenName": "S.", 
        "id": "sg:person.014230311303.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230311303.32"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-07-22", 
    "datePublishedReg": "2013-07-22", 
    "description": "It has long been conjectured that the entropy of quantum fields across boundaries scales as the boundary area. This conjecture has not been easy to test in spacetime dimensions greater than four because of divergences in the von Neumann entropy. Here we show that the R\u00e9nyi entropy provides a convergent alternative, yielding a quantitative measure of entanglement between quantum field theoretic degrees of freedom inside and outside hypersurfaces. For the first time, we show that the entanglement entropy in higher dimensions is proportional to the higher dimensional area. We also show that the R\u00e9nyi entropy diverges at specific values of the R\u00e9nyi parameter q in each dimension, but this divergence can be tamed by introducing a mass to the quantum field.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/jhep07(2013)130", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "keywords": [
      "quantum fields", 
      "convergent alternative", 
      "von Neumann entropy", 
      "higher dimensions", 
      "R\u00e9nyi entropy", 
      "spacetime dimensions", 
      "Neumann entropy", 
      "entropy diverges", 
      "entanglement entropy", 
      "parameter q", 
      "dimensional area", 
      "entropy", 
      "boundary scale", 
      "specific values", 
      "conjecture", 
      "hypersurfaces", 
      "dimensions", 
      "quantitative measures", 
      "freedom", 
      "field", 
      "divergence", 
      "diverges", 
      "boundary area", 
      "entanglement", 
      "alternative", 
      "measures", 
      "time", 
      "values", 
      "degree", 
      "scale", 
      "first time", 
      "area", 
      "mass", 
      "quantum field theoretic degrees", 
      "field theoretic degrees", 
      "theoretic degrees", 
      "outside hypersurfaces", 
      "higher dimensional area", 
      "R\u00e9nyi entropy diverges", 
      "R\u00e9nyi parameter q"
    ], 
    "name": "Entanglement entropy in all dimensions", 
    "pagination": "130", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015835854"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep07(2013)130"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep07(2013)130", 
      "https://app.dimensions.ai/details/publication/pub.1015835854"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/jhep07(2013)130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)130'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      65 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep07(2013)130 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6158ada1770d4586861ee57aeeb5ab68
4 schema:datePublished 2013-07-22
5 schema:datePublishedReg 2013-07-22
6 schema:description It has long been conjectured that the entropy of quantum fields across boundaries scales as the boundary area. This conjecture has not been easy to test in spacetime dimensions greater than four because of divergences in the von Neumann entropy. Here we show that the Rényi entropy provides a convergent alternative, yielding a quantitative measure of entanglement between quantum field theoretic degrees of freedom inside and outside hypersurfaces. For the first time, we show that the entanglement entropy in higher dimensions is proportional to the higher dimensional area. We also show that the Rényi entropy diverges at specific values of the Rényi parameter q in each dimension, but this divergence can be tamed by introducing a mass to the quantum field.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf Nf7369e9ce7214495906d6e61a5de20c7
11 Nfd86ce55a4ed496fadc422cc54bc763d
12 sg:journal.1052482
13 schema:keywords Neumann entropy
14 Rényi entropy
15 Rényi entropy diverges
16 Rényi parameter q
17 alternative
18 area
19 boundary area
20 boundary scale
21 conjecture
22 convergent alternative
23 degree
24 dimensional area
25 dimensions
26 divergence
27 diverges
28 entanglement
29 entanglement entropy
30 entropy
31 entropy diverges
32 field
33 field theoretic degrees
34 first time
35 freedom
36 higher dimensional area
37 higher dimensions
38 hypersurfaces
39 mass
40 measures
41 outside hypersurfaces
42 parameter q
43 quantitative measures
44 quantum field theoretic degrees
45 quantum fields
46 scale
47 spacetime dimensions
48 specific values
49 theoretic degrees
50 time
51 values
52 von Neumann entropy
53 schema:name Entanglement entropy in all dimensions
54 schema:pagination 130
55 schema:productId N897c41218bc244d2ae297dc622a47bda
56 Nf4dc1dba0fcc41e29645f4b036c8a869
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015835854
58 https://doi.org/10.1007/jhep07(2013)130
59 schema:sdDatePublished 2021-11-01T18:20
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N06cc49aea81447579c2454ef036ea343
62 schema:url https://doi.org/10.1007/jhep07(2013)130
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N06cc49aea81447579c2454ef036ea343 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N57bfb7f511ab474c80bcbc21fce50f49 rdf:first sg:person.011603045773.37
69 rdf:rest Nb2778f22368a4d01a7a86cb5a3b44605
70 N6158ada1770d4586861ee57aeeb5ab68 rdf:first sg:person.0666766367.22
71 rdf:rest N57bfb7f511ab474c80bcbc21fce50f49
72 N897c41218bc244d2ae297dc622a47bda schema:name doi
73 schema:value 10.1007/jhep07(2013)130
74 rdf:type schema:PropertyValue
75 Nb2778f22368a4d01a7a86cb5a3b44605 rdf:first sg:person.014230311303.32
76 rdf:rest rdf:nil
77 Nf4dc1dba0fcc41e29645f4b036c8a869 schema:name dimensions_id
78 schema:value pub.1015835854
79 rdf:type schema:PropertyValue
80 Nf7369e9ce7214495906d6e61a5de20c7 schema:issueNumber 7
81 rdf:type schema:PublicationIssue
82 Nfd86ce55a4ed496fadc422cc54bc763d schema:volumeNumber 2013
83 rdf:type schema:PublicationVolume
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1052482 schema:issn 1029-8479
91 1126-6708
92 schema:name Journal of High Energy Physics
93 schema:publisher Springer Nature
94 rdf:type schema:Periodical
95 sg:person.011603045773.37 schema:affiliation grid-institutes:grid.47609.3c
96 schema:familyName Das
97 schema:givenName Saurya
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011603045773.37
99 rdf:type schema:Person
100 sg:person.014230311303.32 schema:affiliation grid-institutes:None
101 schema:familyName Shankaranarayanan
102 schema:givenName S.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014230311303.32
104 rdf:type schema:Person
105 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.5685.e
106 schema:familyName Braunstein
107 schema:givenName Samuel L.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
109 rdf:type schema:Person
110 grid-institutes:None schema:alternateName School of Physics, Indian Institute of Science Education and Research, CET Campus, 695016, Thiruvananthapuram, India
111 schema:name School of Physics, Indian Institute of Science Education and Research, CET Campus, 695016, Thiruvananthapuram, India
112 rdf:type schema:Organization
113 grid-institutes:grid.47609.3c schema:alternateName Theoretical Physics Group, University of Lethbridge, 4401 University Drive, T1K 3 M4, Lethbridge, Alberta, Canada
114 schema:name Theoretical Physics Group, University of Lethbridge, 4401 University Drive, T1K 3 M4, Lethbridge, Alberta, Canada
115 rdf:type schema:Organization
116 grid-institutes:grid.5685.e schema:alternateName Computer Science, University of York, Y010 5GH, York, U.K.
117 schema:name Computer Science, University of York, Y010 5GH, York, U.K.
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...