Supersymmetric M5 brane theories on R × CP2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-11

AUTHORS

Hee-Cheol Kim, Kimyeong Lee

ABSTRACT

We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R × CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R × S5 and have a discrete coupling constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frac{1}{{g_{{Y\;M}}^2}}=\frac{k}{{4{\pi^2}}} $\end{document} with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1, 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU(N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Zk modding of the AdS7 × S4 geometry, we speculate that the M region is for k ≲ N1/3 and the type IIA region is N1/3 ≲ k ≲ N. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory. More... »

PAGES

72

References to SciGraph publications

  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-01-30. (2,0) theory on circle fibrations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-30. The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-06-19. Free tensor multiplets and strings in spontaneously broken six-dimensional (2,0) theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-10-23. 𝒩 = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-04. Supersymmetric states in M5/M2 CFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-01-19. M5-Branes, D4-Branes and quantum 5D super-Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-28. M5-branes from gauge theories on the 5-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-02-03. On D = 5 super Yang-Mills theory and (2, 0) theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-28. Twisted supersymmetric 5D Yang-Mills theory and contact geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-22. 5-dim superconformal index with enhanced En global symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-12-07. On instantons as Kaluza-Klein modes of M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-02-18. Indices for superconformal field theories in 3, 5 and 6 dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep07(2013)072

    DOI

    http://dx.doi.org/10.1007/jhep07(2013)072

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044751378


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Korea Institute for Advanced Study, 130-722, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.249961.1", 
              "name": [
                "Korea Institute for Advanced Study, 130-722, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Hee-Cheol", 
            "id": "sg:person.013137662137.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137662137.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Institute for Advanced Study, 130-722, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.249961.1", 
              "name": [
                "Korea Institute for Advanced Study, 130-722, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Kimyeong", 
            "id": "sg:person.014456763201.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456763201.13"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2012)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036496982", 
              "https://doi.org/10.1007/jhep08(2012)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/06/039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008453699", 
              "https://doi.org/10.1088/1126-6708/2003/06/039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048020345", 
              "https://doi.org/10.1007/jhep10(2012)142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030601133", 
              "https://doi.org/10.1007/jhep05(2013)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003490198", 
              "https://doi.org/10.1007/jhep01(2012)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2011)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053192111", 
              "https://doi.org/10.1007/jhep12(2011)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051077315", 
              "https://doi.org/10.1088/1126-6708/2007/12/004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2011)083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050303342", 
              "https://doi.org/10.1007/jhep01(2011)083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005878973", 
              "https://doi.org/10.1007/jhep05(2012)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010633015", 
              "https://doi.org/10.1088/1126-6708/2008/10/091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/02/064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045155881", 
              "https://doi.org/10.1088/1126-6708/2008/02/064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037470008", 
              "https://doi.org/10.1007/jhep02(2011)011"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-07-11", 
        "datePublishedReg": "2013-07-11", 
        "description": "We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R \u00d7 CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R \u00d7 S5 and have a discrete coupling constant \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\frac{1}{{g_{{Y\\;M}}^2}}=\\frac{k}{{4{\\pi^2}}} $\\end{document} with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1, 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU(N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Zk modding of the AdS7 \u00d7 S4 geometry, we speculate that the M region is for k \u2272 N1/3 and the type IIA region is N1/3 \u2272 k \u2272 N. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep07(2013)072", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "keywords": [
          "supersymmetric case", 
          "Chern-Simons theory", 
          "number of supersymmetries", 
          "superconformal field theories", 
          "natural number k.", 
          "Yang-Mills", 
          "Euclidean path integral", 
          "fuzzy sphere", 
          "field theory", 
          "supersymmetric vacua", 
          "brane theory", 
          "path integral", 
          "dimensional reduction", 
          "M5 branes", 
          "index function", 
          "BPS index", 
          "supersymmetric theories", 
          "supersymmetric enhancement", 
          "vacuum structure", 
          "perturbative part", 
          "Kaluza-Klein modes", 
          "discrete coupling", 
          "theory", 
          "nonperturbative corrections", 
          "symmetric phase", 
          "number k.", 
          "instantons", 
          "supersymmetry", 
          "branes", 
          "n1/3", 
          "integrals", 
          "ZK", 
          "CP2", 
          "multiple representations", 
          "representation", 
          "geometry", 
          "modding", 
          "cases", 
          "S5", 
          "function", 
          "number", 
          "coupling", 
          "sphere", 
          "full index", 
          "correction", 
          "structure", 
          "vacuum", 
          "mode", 
          "index", 
          "part", 
          "reduction", 
          "region", 
          "enhancement", 
          "phase", 
          "supersymmetric conformal Yang-Mills", 
          "conformal Yang-Mills", 
          "twisted Zk", 
          "k.", 
          "degenerate supersymmetric vacua", 
          "gauge group Euclidean path integral", 
          "group Euclidean path integral", 
          "similar twisted Zk modding", 
          "twisted Zk modding", 
          "Zk modding", 
          "AdS7 \u00d7 S4 geometry", 
          "\u00d7 S4 geometry", 
          "S4 geometry", 
          "type IIA region", 
          "IIA region", 
          "Supersymmetric M5 brane theories", 
          "M5 brane theories"
        ], 
        "name": "Supersymmetric M5 brane theories on R \u00d7 CP2", 
        "pagination": "72", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044751378"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep07(2013)072"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep07(2013)072", 
          "https://app.dimensions.ai/details/publication/pub.1044751378"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_590.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep07(2013)072"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)072'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)072'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)072'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2013)072'


     

    This table displays all metadata directly associated to this object as RDF triples.

    188 TRIPLES      22 PREDICATES      109 URIs      88 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep07(2013)072 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8ed8c916b2824649848d0cfbb03a7334
    4 schema:citation sg:pub.10.1007/jhep01(2011)083
    5 sg:pub.10.1007/jhep01(2012)159
    6 sg:pub.10.1007/jhep02(2011)011
    7 sg:pub.10.1007/jhep05(2012)125
    8 sg:pub.10.1007/jhep05(2013)144
    9 sg:pub.10.1007/jhep08(2012)157
    10 sg:pub.10.1007/jhep10(2012)142
    11 sg:pub.10.1007/jhep12(2011)031
    12 sg:pub.10.1007/s00220-007-0258-7
    13 sg:pub.10.1088/1126-6708/2003/06/039
    14 sg:pub.10.1088/1126-6708/2007/12/004
    15 sg:pub.10.1088/1126-6708/2008/02/064
    16 sg:pub.10.1088/1126-6708/2008/10/091
    17 schema:datePublished 2013-07-11
    18 schema:datePublishedReg 2013-07-11
    19 schema:description We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R × CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R × S5 and have a discrete coupling constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \frac{1}{{g_{{Y\;M}}^2}}=\frac{k}{{4{\pi^2}}} $\end{document} with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1, 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU(N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Zk modding of the AdS7 × S4 geometry, we speculate that the M region is for k ≲ N1/3 and the type IIA region is N1/3 ≲ k ≲ N. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N6c7cae8679214d09b3e6bdf085d4bdb0
    24 Naebfc3f9fb8f4dde815185595289870c
    25 sg:journal.1052482
    26 schema:keywords AdS7 × S4 geometry
    27 BPS index
    28 CP2
    29 Chern-Simons theory
    30 Euclidean path integral
    31 IIA region
    32 Kaluza-Klein modes
    33 M5 brane theories
    34 M5 branes
    35 S4 geometry
    36 S5
    37 Supersymmetric M5 brane theories
    38 Yang-Mills
    39 ZK
    40 Zk modding
    41 brane theory
    42 branes
    43 cases
    44 conformal Yang-Mills
    45 correction
    46 coupling
    47 degenerate supersymmetric vacua
    48 dimensional reduction
    49 discrete coupling
    50 enhancement
    51 field theory
    52 full index
    53 function
    54 fuzzy sphere
    55 gauge group Euclidean path integral
    56 geometry
    57 group Euclidean path integral
    58 index
    59 index function
    60 instantons
    61 integrals
    62 k.
    63 modding
    64 mode
    65 multiple representations
    66 n1/3
    67 natural number k.
    68 nonperturbative corrections
    69 number
    70 number k.
    71 number of supersymmetries
    72 part
    73 path integral
    74 perturbative part
    75 phase
    76 reduction
    77 region
    78 representation
    79 similar twisted Zk modding
    80 sphere
    81 structure
    82 superconformal field theories
    83 supersymmetric case
    84 supersymmetric conformal Yang-Mills
    85 supersymmetric enhancement
    86 supersymmetric theories
    87 supersymmetric vacua
    88 supersymmetry
    89 symmetric phase
    90 theory
    91 twisted Zk
    92 twisted Zk modding
    93 type IIA region
    94 vacuum
    95 vacuum structure
    96 × S4 geometry
    97 schema:name Supersymmetric M5 brane theories on R × CP2
    98 schema:pagination 72
    99 schema:productId N07eb1699daa945e4a34b25465cfc4f7f
    100 Nbb31656ae4ce4b9383d3b40a2401b41d
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044751378
    102 https://doi.org/10.1007/jhep07(2013)072
    103 schema:sdDatePublished 2021-11-01T18:18
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N52c879c7d93d4aa0aefdc83a186d8d74
    106 schema:url https://doi.org/10.1007/jhep07(2013)072
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N07eb1699daa945e4a34b25465cfc4f7f schema:name dimensions_id
    111 schema:value pub.1044751378
    112 rdf:type schema:PropertyValue
    113 N240bd6d7cd374f7d90d686aa65c4c309 rdf:first sg:person.014456763201.13
    114 rdf:rest rdf:nil
    115 N52c879c7d93d4aa0aefdc83a186d8d74 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 N6c7cae8679214d09b3e6bdf085d4bdb0 schema:volumeNumber 2013
    118 rdf:type schema:PublicationVolume
    119 N8ed8c916b2824649848d0cfbb03a7334 rdf:first sg:person.013137662137.65
    120 rdf:rest N240bd6d7cd374f7d90d686aa65c4c309
    121 Naebfc3f9fb8f4dde815185595289870c schema:issueNumber 7
    122 rdf:type schema:PublicationIssue
    123 Nbb31656ae4ce4b9383d3b40a2401b41d schema:name doi
    124 schema:value 10.1007/jhep07(2013)072
    125 rdf:type schema:PropertyValue
    126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Mathematical Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Pure Mathematics
    131 rdf:type schema:DefinedTerm
    132 sg:journal.1052482 schema:issn 1029-8479
    133 1126-6708
    134 schema:name Journal of High Energy Physics
    135 schema:publisher Springer Nature
    136 rdf:type schema:Periodical
    137 sg:person.013137662137.65 schema:affiliation grid-institutes:grid.249961.1
    138 schema:familyName Kim
    139 schema:givenName Hee-Cheol
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137662137.65
    141 rdf:type schema:Person
    142 sg:person.014456763201.13 schema:affiliation grid-institutes:grid.249961.1
    143 schema:familyName Lee
    144 schema:givenName Kimyeong
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456763201.13
    146 rdf:type schema:Person
    147 sg:pub.10.1007/jhep01(2011)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050303342
    148 https://doi.org/10.1007/jhep01(2011)083
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep01(2012)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003490198
    151 https://doi.org/10.1007/jhep01(2012)159
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep02(2011)011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037470008
    154 https://doi.org/10.1007/jhep02(2011)011
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep05(2012)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005878973
    157 https://doi.org/10.1007/jhep05(2012)125
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep05(2013)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030601133
    160 https://doi.org/10.1007/jhep05(2013)144
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep08(2012)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036496982
    163 https://doi.org/10.1007/jhep08(2012)157
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/jhep10(2012)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048020345
    166 https://doi.org/10.1007/jhep10(2012)142
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/jhep12(2011)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053192111
    169 https://doi.org/10.1007/jhep12(2011)031
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    172 https://doi.org/10.1007/s00220-007-0258-7
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1088/1126-6708/2003/06/039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008453699
    175 https://doi.org/10.1088/1126-6708/2003/06/039
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1088/1126-6708/2007/12/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051077315
    178 https://doi.org/10.1088/1126-6708/2007/12/004
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1088/1126-6708/2008/02/064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045155881
    181 https://doi.org/10.1088/1126-6708/2008/02/064
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1088/1126-6708/2008/10/091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010633015
    184 https://doi.org/10.1088/1126-6708/2008/10/091
    185 rdf:type schema:CreativeWork
    186 grid-institutes:grid.249961.1 schema:alternateName Korea Institute for Advanced Study, 130-722, Seoul, Korea
    187 schema:name Korea Institute for Advanced Study, 130-722, Seoul, Korea
    188 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...