curves for trifundamentals View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-07-05

AUTHORS

Yuji Tachikawa, Kazuya Yonekura

ABSTRACT

We study the Coulomb phase of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} SU(2)3 gauge theory coupled to one trifundamental field, and generalizations thereof. The moduli space of vacua is always one-dimensional with multiple unbroken U(1) fields. We find that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} Seiberg-Witten curve which encodes the U(1) couplings is given by the double cover of a Riemann surface branched at the poles and the zeros of a meromorphic function. More... »

PAGES

25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep07(2011)025

DOI

http://dx.doi.org/10.1007/jhep07(2011)025

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007483572


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Natural Sciences, Institute for Advanced Study, 08504, Princeton, New Jersey, U.S.A.", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, 08504, Princeton, New Jersey, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tachikawa", 
        "givenName": "Yuji", 
        "id": "sg:person.010520672276.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 277-8568, Chiba, Japan", 
            "Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yonekura", 
        "givenName": "Kazuya", 
        "id": "sg:person.07506765427.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1088/1126-6708/1999/11/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016370182", 
          "https://doi.org/10.1088/1126-6708/1999/11/014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/09/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005774165", 
          "https://doi.org/10.1088/1126-6708/1998/09/007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2011)069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048187336", 
          "https://doi.org/10.1007/jhep02(2011)069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032453331", 
          "https://doi.org/10.1007/jhep01(2010)088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/09/086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018116770", 
          "https://doi.org/10.1088/1126-6708/2009/09/086"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07-05", 
    "datePublishedReg": "2011-07-05", 
    "description": "We study the Coulomb phase of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = 1 $\\end{document} SU(2)3 gauge theory coupled to one trifundamental field, and generalizations thereof. The moduli space of vacua is always one-dimensional with multiple unbroken U(1) fields. We find that the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = 1 $\\end{document} Seiberg-Witten curve which encodes the U(1) couplings is given by the double cover of a Riemann surface branched at the poles and the zeros of a meromorphic function.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/jhep07(2011)025", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2011"
      }
    ], 
    "keywords": [
      "Seiberg-Witten curve", 
      "Riemann surface", 
      "moduli space", 
      "gauge theory", 
      "Coulomb phase", 
      "meromorphic functions", 
      "double cover", 
      "field", 
      "generalization", 
      "zeros", 
      "theory", 
      "space", 
      "coupling", 
      "vacuum", 
      "curves", 
      "poles", 
      "function", 
      "phase", 
      "surface", 
      "cover"
    ], 
    "name": "curves for trifundamentals", 
    "pagination": "25", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007483572"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep07(2011)025"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep07(2011)025", 
      "https://app.dimensions.ai/details/publication/pub.1007483572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_552.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/jhep07(2011)025"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2011)025'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2011)025'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2011)025'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep07(2011)025'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      49 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep07(2011)025 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf59ab05058814d1ba1db26badd9c24a2
4 schema:citation sg:pub.10.1007/jhep01(2010)088
5 sg:pub.10.1007/jhep02(2011)069
6 sg:pub.10.1088/1126-6708/1998/09/007
7 sg:pub.10.1088/1126-6708/1999/11/014
8 sg:pub.10.1088/1126-6708/2009/09/086
9 schema:datePublished 2011-07-05
10 schema:datePublishedReg 2011-07-05
11 schema:description We study the Coulomb phase of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} SU(2)3 gauge theory coupled to one trifundamental field, and generalizations thereof. The moduli space of vacua is always one-dimensional with multiple unbroken U(1) fields. We find that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} Seiberg-Witten curve which encodes the U(1) couplings is given by the double cover of a Riemann surface branched at the poles and the zeros of a meromorphic function.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N6a454be991364fbbba7412e28c51e754
15 Nb977f1bbef0d4491bbbede299634b494
16 sg:journal.1052482
17 schema:keywords Coulomb phase
18 Riemann surface
19 Seiberg-Witten curve
20 coupling
21 cover
22 curves
23 double cover
24 field
25 function
26 gauge theory
27 generalization
28 meromorphic functions
29 moduli space
30 phase
31 poles
32 space
33 surface
34 theory
35 vacuum
36 zeros
37 schema:name curves for trifundamentals
38 schema:pagination 25
39 schema:productId N5cd0f93a6d4949489b96e8fa6f284d54
40 Nc500c182ee6d453dbccbdcb674fb7659
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007483572
42 https://doi.org/10.1007/jhep07(2011)025
43 schema:sdDatePublished 2022-09-02T15:55
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N598e8717496b4f90aa282f4f39d25147
46 schema:url https://doi.org/10.1007/jhep07(2011)025
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N598e8717496b4f90aa282f4f39d25147 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N5cd0f93a6d4949489b96e8fa6f284d54 schema:name doi
53 schema:value 10.1007/jhep07(2011)025
54 rdf:type schema:PropertyValue
55 N6a454be991364fbbba7412e28c51e754 schema:issueNumber 7
56 rdf:type schema:PublicationIssue
57 N7a5bd2a767a645a38fd3c5bafcf4d828 rdf:first sg:person.07506765427.69
58 rdf:rest rdf:nil
59 Nb977f1bbef0d4491bbbede299634b494 schema:volumeNumber 2011
60 rdf:type schema:PublicationVolume
61 Nc500c182ee6d453dbccbdcb674fb7659 schema:name dimensions_id
62 schema:value pub.1007483572
63 rdf:type schema:PropertyValue
64 Nf59ab05058814d1ba1db26badd9c24a2 rdf:first sg:person.010520672276.19
65 rdf:rest N7a5bd2a767a645a38fd3c5bafcf4d828
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1052482 schema:issn 1029-8479
73 1126-6708
74 schema:name Journal of High Energy Physics
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.010520672276.19 schema:affiliation grid-institutes:None
78 schema:familyName Tachikawa
79 schema:givenName Yuji
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
81 rdf:type schema:Person
82 sg:person.07506765427.69 schema:affiliation grid-institutes:grid.26999.3d
83 schema:familyName Yonekura
84 schema:givenName Kazuya
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07506765427.69
86 rdf:type schema:Person
87 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
88 https://doi.org/10.1007/jhep01(2010)088
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/jhep02(2011)069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187336
91 https://doi.org/10.1007/jhep02(2011)069
92 rdf:type schema:CreativeWork
93 sg:pub.10.1088/1126-6708/1998/09/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005774165
94 https://doi.org/10.1088/1126-6708/1998/09/007
95 rdf:type schema:CreativeWork
96 sg:pub.10.1088/1126-6708/1999/11/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016370182
97 https://doi.org/10.1088/1126-6708/1999/11/014
98 rdf:type schema:CreativeWork
99 sg:pub.10.1088/1126-6708/2009/09/086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018116770
100 https://doi.org/10.1088/1126-6708/2009/09/086
101 rdf:type schema:CreativeWork
102 grid-institutes:None schema:alternateName School of Natural Sciences, Institute for Advanced Study, 08504, Princeton, New Jersey, U.S.A.
103 schema:name School of Natural Sciences, Institute for Advanced Study, 08504, Princeton, New Jersey, U.S.A.
104 rdf:type schema:Organization
105 grid-institutes:grid.26999.3d schema:alternateName Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan
106 schema:name Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan
107 Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 277-8568, Chiba, Japan
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...