Magnetic quivers, Higgs branches and 6d N=1,0 theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-06-14

AUTHORS

Santiago Cabrera, Amihay Hanany, Marcus Sperling

ABSTRACT

The physics of M5 branes placed near an M9 plane on an A-type ALE singularity exhibits a variety of phenomena that introduce additional massless degrees of freedom. There are tensionless strings whenever two M5 branes coincide or whenever an M5 brane approaches the M9 plane. These systems do not admit a low-energy Lagrangian description so new techniques are desirable to shed light on the physics of these phenomena. The 6-dimensional N=1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = \left(1,\kern0.5em 0\right) $$\end{document} world-volume theory on the M5 branes is composed of massless vector, tensor, and hyper multiplets, and has two branches of the vacuum moduli space where either the scalar fields in the tensor or hyper multiplets receive vacuum expectation values. Focusing on the Higgs branch of the low-energy theory, previous works suggest the conjecture that a new Higgs branch arises whenever a BPS-string becomes tensionless. Consequently, a single theory admits a multitude of Higgs branches depending on the types of tensionless strings in the spectrum. The two main phenomena discrete gauging and small E8instanton transition can be treated in a concise and effective manner by means of Coulomb branches of 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 4 $$\end{document} gauge theories. In this paper, a formalism is introduced that allows to derive a novel object from a brane configuration, called the magnetic quiver. The main features are as follows: (i) the 3d Coulomb branch of the magnetic quiver yields the Higgs branch of the 6d system, (ii) all discrete gauging and E8 instanton transitions have an explicit brane realisation, and (iii) exceptional symmetries arise directly from brane configurations. The formalism facilitates the description of Higgs branches at finite and infinite gauge coupling as spaces of dressed monopole operators. More... »

PAGES

71

References to SciGraph publications

  • 2018-07-16. The small E8 instanton and the Kraft Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-23. Brane webs, 5d gauge theories and 6dN=1,0 SCFT’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-28. E8 instantons on type-A ALE spaces and supersymmetric field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-10. Small instanton transitions for M5 fractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 1987-12. Hyperkähler metrics and supersymmetry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-04-23. On mirror symmetry in three dimensional Abelian gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-05-08. On heterotic orbifolds, M-theory and type I' brane engineering in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-03. Symplectic singularities in INVENTIONES MATHEMATICAE
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-08. Tropical geometry and five dimensional Higgs branches at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-04. S1/T2 compactifications of 6d N=1,0 theories and brane webs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-10. 6d Conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-24. Discrete quotients of 3-dimensional N=4 Coulomb branches via the cycle index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-09-03. Quiver subtractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-07. On the classification of 6D SCFTs and generalized ADE orbifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-24. Discrete gauging in Coulomb branches of three dimensional N=4 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-26. Discrete gauging in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-05-29. 6d SCFTs, 5d dualities and Tao web diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep06(2019)071

    DOI

    http://dx.doi.org/10.1007/jhep06(2019)071

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1117301053


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cabrera", 
            "givenName": "Santiago", 
            "id": "sg:person.015574474365.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sperling", 
            "givenName": "Marcus", 
            "id": "sg:person.013671173243.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep05(2014)028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016623483", 
              "https://doi.org/10.1007/jhep05(2014)028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002229900043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041729477", 
              "https://doi.org/10.1007/s002229900043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022076696", 
              "https://doi.org/10.1007/jhep02(2015)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105681214", 
              "https://doi.org/10.1007/jhep07(2018)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014226650", 
              "https://doi.org/10.1007/jhep12(2015)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105875050", 
              "https://doi.org/10.1007/jhep07(2018)168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2018)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106581267", 
              "https://doi.org/10.1007/jhep09(2018)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111314197", 
              "https://doi.org/10.1007/jhep01(2019)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2019)203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116013141", 
              "https://doi.org/10.1007/jhep05(2019)203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01214418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052766039", 
              "https://doi.org/10.1007/bf01214418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092002758", 
              "https://doi.org/10.1007/jhep09(2017)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092166212", 
              "https://doi.org/10.1007/jhep10(2017)055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/05/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053584273", 
              "https://doi.org/10.1088/1126-6708/2002/05/015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/04/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001667186", 
              "https://doi.org/10.1088/1126-6708/1999/04/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038390804", 
              "https://doi.org/10.1007/jhep03(2016)024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106339497", 
              "https://doi.org/10.1007/jhep08(2018)158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106341456", 
              "https://doi.org/10.1007/jhep08(2018)157"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-06-14", 
        "datePublishedReg": "2019-06-14", 
        "description": "The physics of M5 branes placed near an M9 plane on an A-type ALE singularity exhibits a variety of phenomena that introduce additional massless degrees of freedom. There are tensionless strings whenever two M5 branes coincide or whenever an M5 brane approaches the M9 plane. These systems do not admit a low-energy Lagrangian description so new techniques are desirable to shed light on the physics of these phenomena. The 6-dimensional N=1,0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} = \\left(1,\\kern0.5em 0\\right) $$\\end{document} world-volume theory on the M5 branes is composed of massless vector, tensor, and hyper multiplets, and has two branches of the vacuum moduli space where either the scalar fields in the tensor or hyper multiplets receive vacuum expectation values. Focusing on the Higgs branch of the low-energy theory, previous works suggest the conjecture that a new Higgs branch arises whenever a BPS-string becomes tensionless. Consequently, a single theory admits a multitude of Higgs branches depending on the types of tensionless strings in the spectrum. The two main phenomena discrete gauging and small E8instanton transition can be treated in a concise and effective manner by means of Coulomb branches of 3-dimensional N=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} = 4 $$\\end{document} gauge theories. In this paper, a formalism is introduced that allows to derive a novel object from a brane configuration, called the magnetic quiver. The main features are as follows: (i) the 3d Coulomb branch of the magnetic quiver yields the Higgs branch of the 6d system, (ii) all discrete gauging and E8 instanton transitions have an explicit brane realisation, and (iii) exceptional symmetries arise directly from brane configurations. The formalism facilitates the description of Higgs branches at finite and infinite gauge coupling as spaces of dressed monopole operators.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep06(2019)071", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "magnetic quivers", 
          "Higgs branch", 
          "M5-branes", 
          "tensionless strings", 
          "hyper multiplets", 
          "Coulomb branch", 
          "brane configurations", 
          "vacuum moduli space", 
          "world-volume theory", 
          "discrete gauging", 
          "low-energy theory", 
          "BPS strings", 
          "vacuum expectation value", 
          "infinite gauge", 
          "moduli space", 
          "massless vector", 
          "scalar field", 
          "monopole operators", 
          "Lagrangian description", 
          "gauge theory", 
          "massless degrees", 
          "M9 plane", 
          "variety of phenomena", 
          "exceptional symmetry", 
          "expectation values", 
          "instanton transitions", 
          "quivers", 
          "brane", 
          "physics", 
          "theory", 
          "formalism", 
          "tensor", 
          "gauging", 
          "multiplets", 
          "main features", 
          "space", 
          "string", 
          "finite", 
          "singularity", 
          "conjecture", 
          "transition", 
          "previous work", 
          "symmetry", 
          "operators", 
          "single theory", 
          "description", 
          "plane", 
          "tensionless", 
          "branches", 
          "new technique", 
          "spectra", 
          "phenomenon", 
          "configuration", 
          "system", 
          "coincide", 
          "field", 
          "light", 
          "freedom", 
          "vector", 
          "objects", 
          "gauge", 
          "realisation", 
          "technique", 
          "means", 
          "effective manner", 
          "work", 
          "values", 
          "features", 
          "degree", 
          "variety", 
          "types", 
          "multitude", 
          "manner", 
          "paper", 
          "novel objects"
        ], 
        "name": "Magnetic quivers, Higgs branches and 6d N=1,0 theories", 
        "pagination": "71", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1117301053"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep06(2019)071"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep06(2019)071", 
          "https://app.dimensions.ai/details/publication/pub.1117301053"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_801.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep06(2019)071"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2019)071'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2019)071'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2019)071'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2019)071'


     

    This table displays all metadata directly associated to this object as RDF triples.

    241 TRIPLES      21 PREDICATES      121 URIs      91 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep06(2019)071 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na65ec0e202ef482aa888bf2aa8585181
    4 schema:citation sg:pub.10.1007/bf01214418
    5 sg:pub.10.1007/jhep01(2014)005
    6 sg:pub.10.1007/jhep01(2019)068
    7 sg:pub.10.1007/jhep02(2015)054
    8 sg:pub.10.1007/jhep03(2016)024
    9 sg:pub.10.1007/jhep04(2017)042
    10 sg:pub.10.1007/jhep04(2018)127
    11 sg:pub.10.1007/jhep05(2014)028
    12 sg:pub.10.1007/jhep05(2019)203
    13 sg:pub.10.1007/jhep07(2018)061
    14 sg:pub.10.1007/jhep07(2018)098
    15 sg:pub.10.1007/jhep07(2018)168
    16 sg:pub.10.1007/jhep08(2018)157
    17 sg:pub.10.1007/jhep08(2018)158
    18 sg:pub.10.1007/jhep09(2017)144
    19 sg:pub.10.1007/jhep09(2018)008
    20 sg:pub.10.1007/jhep10(2017)055
    21 sg:pub.10.1007/jhep11(2016)175
    22 sg:pub.10.1007/jhep12(2015)157
    23 sg:pub.10.1007/s002229900043
    24 sg:pub.10.1088/1126-6708/1999/04/021
    25 sg:pub.10.1088/1126-6708/2002/05/015
    26 schema:datePublished 2019-06-14
    27 schema:datePublishedReg 2019-06-14
    28 schema:description The physics of M5 branes placed near an M9 plane on an A-type ALE singularity exhibits a variety of phenomena that introduce additional massless degrees of freedom. There are tensionless strings whenever two M5 branes coincide or whenever an M5 brane approaches the M9 plane. These systems do not admit a low-energy Lagrangian description so new techniques are desirable to shed light on the physics of these phenomena. The 6-dimensional N=1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = \left(1,\kern0.5em 0\right) $$\end{document} world-volume theory on the M5 branes is composed of massless vector, tensor, and hyper multiplets, and has two branches of the vacuum moduli space where either the scalar fields in the tensor or hyper multiplets receive vacuum expectation values. Focusing on the Higgs branch of the low-energy theory, previous works suggest the conjecture that a new Higgs branch arises whenever a BPS-string becomes tensionless. Consequently, a single theory admits a multitude of Higgs branches depending on the types of tensionless strings in the spectrum. The two main phenomena discrete gauging and small E8instanton transition can be treated in a concise and effective manner by means of Coulomb branches of 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 4 $$\end{document} gauge theories. In this paper, a formalism is introduced that allows to derive a novel object from a brane configuration, called the magnetic quiver. The main features are as follows: (i) the 3d Coulomb branch of the magnetic quiver yields the Higgs branch of the 6d system, (ii) all discrete gauging and E8 instanton transitions have an explicit brane realisation, and (iii) exceptional symmetries arise directly from brane configurations. The formalism facilitates the description of Higgs branches at finite and infinite gauge coupling as spaces of dressed monopole operators.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N8493525e33664c599438fe2770edf480
    32 N93f0eae4c8da42aa80d1075016ed2a93
    33 sg:journal.1052482
    34 schema:keywords BPS strings
    35 Coulomb branch
    36 Higgs branch
    37 Lagrangian description
    38 M5-branes
    39 M9 plane
    40 branches
    41 brane
    42 brane configurations
    43 coincide
    44 configuration
    45 conjecture
    46 degree
    47 description
    48 discrete gauging
    49 effective manner
    50 exceptional symmetry
    51 expectation values
    52 features
    53 field
    54 finite
    55 formalism
    56 freedom
    57 gauge
    58 gauge theory
    59 gauging
    60 hyper multiplets
    61 infinite gauge
    62 instanton transitions
    63 light
    64 low-energy theory
    65 magnetic quivers
    66 main features
    67 manner
    68 massless degrees
    69 massless vector
    70 means
    71 moduli space
    72 monopole operators
    73 multiplets
    74 multitude
    75 new technique
    76 novel objects
    77 objects
    78 operators
    79 paper
    80 phenomenon
    81 physics
    82 plane
    83 previous work
    84 quivers
    85 realisation
    86 scalar field
    87 single theory
    88 singularity
    89 space
    90 spectra
    91 string
    92 symmetry
    93 system
    94 technique
    95 tensionless
    96 tensionless strings
    97 tensor
    98 theory
    99 transition
    100 types
    101 vacuum expectation value
    102 vacuum moduli space
    103 values
    104 variety
    105 variety of phenomena
    106 vector
    107 work
    108 world-volume theory
    109 schema:name Magnetic quivers, Higgs branches and 6d N=1,0 theories
    110 schema:pagination 71
    111 schema:productId N33bc88b22fce41c2b5b51d7e27bc141a
    112 N92d684f14f044d6296c2eba2b2d92599
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117301053
    114 https://doi.org/10.1007/jhep06(2019)071
    115 schema:sdDatePublished 2022-10-01T06:45
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Nfb11b1be3042436db590e9512e2bc2ee
    118 schema:url https://doi.org/10.1007/jhep06(2019)071
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N33bc88b22fce41c2b5b51d7e27bc141a schema:name doi
    123 schema:value 10.1007/jhep06(2019)071
    124 rdf:type schema:PropertyValue
    125 N53d2a367ab5c45689a8c7e9a38f923f9 rdf:first sg:person.013671173243.88
    126 rdf:rest rdf:nil
    127 N8493525e33664c599438fe2770edf480 schema:issueNumber 6
    128 rdf:type schema:PublicationIssue
    129 N92d684f14f044d6296c2eba2b2d92599 schema:name dimensions_id
    130 schema:value pub.1117301053
    131 rdf:type schema:PropertyValue
    132 N93235c986fb34feca4fd3a3a7c3236b4 rdf:first sg:person.012155553275.80
    133 rdf:rest N53d2a367ab5c45689a8c7e9a38f923f9
    134 N93f0eae4c8da42aa80d1075016ed2a93 schema:volumeNumber 2019
    135 rdf:type schema:PublicationVolume
    136 Na65ec0e202ef482aa888bf2aa8585181 rdf:first sg:person.015574474365.83
    137 rdf:rest N93235c986fb34feca4fd3a3a7c3236b4
    138 Nfb11b1be3042436db590e9512e2bc2ee schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Mathematical Sciences
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Pure Mathematics
    145 rdf:type schema:DefinedTerm
    146 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep06(2019)071
    147 rdf:type schema:MonetaryGrant
    148 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep06(2019)071
    149 rdf:type schema:MonetaryGrant
    150 sg:journal.1052482 schema:issn 1029-8479
    151 1126-6708
    152 schema:name Journal of High Energy Physics
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    156 schema:familyName Hanany
    157 schema:givenName Amihay
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    159 rdf:type schema:Person
    160 sg:person.013671173243.88 schema:affiliation grid-institutes:grid.12527.33
    161 schema:familyName Sperling
    162 schema:givenName Marcus
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
    164 rdf:type schema:Person
    165 sg:person.015574474365.83 schema:affiliation grid-institutes:grid.7445.2
    166 schema:familyName Cabrera
    167 schema:givenName Santiago
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83
    169 rdf:type schema:Person
    170 sg:pub.10.1007/bf01214418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052766039
    171 https://doi.org/10.1007/bf01214418
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    174 https://doi.org/10.1007/jhep01(2014)005
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep01(2019)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314197
    177 https://doi.org/10.1007/jhep01(2019)068
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep02(2015)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076696
    180 https://doi.org/10.1007/jhep02(2015)054
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep03(2016)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390804
    183 https://doi.org/10.1007/jhep03(2016)024
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    186 https://doi.org/10.1007/jhep04(2017)042
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    189 https://doi.org/10.1007/jhep04(2018)127
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/jhep05(2014)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623483
    192 https://doi.org/10.1007/jhep05(2014)028
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/jhep05(2019)203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116013141
    195 https://doi.org/10.1007/jhep05(2019)203
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    198 https://doi.org/10.1007/jhep07(2018)061
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/jhep07(2018)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681214
    201 https://doi.org/10.1007/jhep07(2018)098
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/jhep07(2018)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
    204 https://doi.org/10.1007/jhep07(2018)168
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/jhep08(2018)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106341456
    207 https://doi.org/10.1007/jhep08(2018)157
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/jhep08(2018)158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106339497
    210 https://doi.org/10.1007/jhep08(2018)158
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/jhep09(2017)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092002758
    213 https://doi.org/10.1007/jhep09(2017)144
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/jhep09(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
    216 https://doi.org/10.1007/jhep09(2018)008
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/jhep10(2017)055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092166212
    219 https://doi.org/10.1007/jhep10(2017)055
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    222 https://doi.org/10.1007/jhep11(2016)175
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/jhep12(2015)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014226650
    225 https://doi.org/10.1007/jhep12(2015)157
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s002229900043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041729477
    228 https://doi.org/10.1007/s002229900043
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1088/1126-6708/1999/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667186
    231 https://doi.org/10.1088/1126-6708/1999/04/021
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1088/1126-6708/2002/05/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053584273
    234 https://doi.org/10.1088/1126-6708/2002/05/015
    235 rdf:type schema:CreativeWork
    236 grid-institutes:grid.12527.33 schema:alternateName Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China
    237 schema:name Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China
    238 rdf:type schema:Organization
    239 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    240 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    241 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...