Quiver theories for moduli spaces of classical group nilpotent orbits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06

AUTHORS

Amihay Hanany, Rudolph Kalveks

ABSTRACT

We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. More... »

PAGES

130

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep06(2016)130

DOI

http://dx.doi.org/10.1007/jhep06(2016)130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002377219


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalveks", 
        "givenName": "Rudolph", 
        "id": "sg:person.014000413552.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)80030-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000672730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2014)005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004476555", 
          "https://doi.org/10.1007/jhep01(2014)005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2009.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008330346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2010)063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009424522", 
          "https://doi.org/10.1007/jhep09(2010)063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(78)90141-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010707592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(78)90141-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010707592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2014)152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011840461", 
          "https://doi.org/10.1007/jhep10(2014)152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2014)152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011840461", 
          "https://doi.org/10.1007/jhep10(2014)152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2015)118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023071", 
          "https://doi.org/10.1007/jhep12(2015)118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2015)118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023071", 
          "https://doi.org/10.1007/jhep12(2015)118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012084421", 
          "https://doi.org/10.1088/1126-6708/2008/05/099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013703167", 
          "https://doi.org/10.1088/1126-6708/2007/11/050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2015)106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020208042", 
          "https://doi.org/10.1007/jhep08(2015)106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2010)072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022851903", 
          "https://doi.org/10.1007/jhep08(2010)072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1978.0143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024710827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024992501", 
          "https://doi.org/10.1088/1126-6708/2000/11/033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415964", 
          "https://doi.org/10.1088/1126-6708/2002/12/044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2013)189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027167895", 
          "https://doi.org/10.1007/jhep11(2013)189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2014)103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036891425", 
          "https://doi.org/10.1007/jhep12(2014)103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/10/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037453259", 
          "https://doi.org/10.1088/1126-6708/2008/10/012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040656476", 
          "https://doi.org/10.1088/1126-6708/2007/03/090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02565876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041235603", 
          "https://doi.org/10.1007/bf02565876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2012)079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043468416", 
          "https://doi.org/10.1007/jhep01(2012)079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2013)070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046707518", 
          "https://doi.org/10.1007/jhep01(2013)070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048031409", 
          "https://doi.org/10.1007/jhep01(2015)150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1607-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049095812", 
          "https://doi.org/10.1007/s00220-012-1607-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(96)01088-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049623391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2015)173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050067337", 
          "https://doi.org/10.1007/jhep04(2015)173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2015)173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050067337", 
          "https://doi.org/10.1007/jhep04(2015)173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00625-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051449678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2014)178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052177898", 
          "https://doi.org/10.1007/jhep09(2014)178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x96000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x1340006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062927113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214445316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/trans2/006/02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089182964"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperK\u00e4hler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep06(2016)130", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2755951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3861842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "name": "Quiver theories for moduli spaces of classical group nilpotent orbits", 
    "pagination": "130", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b519af4eccdcbdba82bc7b2d34eea59edfecf246fef1493d81ec8c2b977e182"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep06(2016)130"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002377219"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep06(2016)130", 
      "https://app.dimensions.ai/details/publication/pub.1002377219"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88253_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP06%282016%29130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep06(2016)130 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9265c0d3841a40958496a800887ff439
4 schema:citation sg:pub.10.1007/bf02565876
5 sg:pub.10.1007/jhep01(2012)079
6 sg:pub.10.1007/jhep01(2013)070
7 sg:pub.10.1007/jhep01(2014)005
8 sg:pub.10.1007/jhep01(2015)150
9 sg:pub.10.1007/jhep04(2015)173
10 sg:pub.10.1007/jhep06(2010)100
11 sg:pub.10.1007/jhep08(2010)072
12 sg:pub.10.1007/jhep08(2015)106
13 sg:pub.10.1007/jhep09(2010)063
14 sg:pub.10.1007/jhep09(2014)178
15 sg:pub.10.1007/jhep10(2014)152
16 sg:pub.10.1007/jhep11(2013)189
17 sg:pub.10.1007/jhep12(2014)103
18 sg:pub.10.1007/jhep12(2015)118
19 sg:pub.10.1007/s00220-012-1607-8
20 sg:pub.10.1088/1126-6708/2000/11/033
21 sg:pub.10.1088/1126-6708/2002/12/044
22 sg:pub.10.1088/1126-6708/2007/03/090
23 sg:pub.10.1088/1126-6708/2007/11/050
24 sg:pub.10.1088/1126-6708/2008/05/099
25 sg:pub.10.1088/1126-6708/2008/10/012
26 https://doi.org/10.1016/0370-2693(96)01088-x
27 https://doi.org/10.1016/0375-9601(78)90141-x
28 https://doi.org/10.1016/0550-3213(95)00625-7
29 https://doi.org/10.1016/j.nuclphysb.2009.09.016
30 https://doi.org/10.1016/s0550-3213(97)80030-2
31 https://doi.org/10.1090/trans2/006/02
32 https://doi.org/10.1098/rspa.1978.0143
33 https://doi.org/10.1142/s0129167x96000116
34 https://doi.org/10.1142/s0217751x1340006x
35 https://doi.org/10.4310/atmp.2009.v13.n3.a5
36 https://doi.org/10.4310/jdg/1214445316
37 schema:datePublished 2016-06
38 schema:datePublishedReg 2016-06-01
39 schema:description We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N32d4fb2c696945aaaf84c81b775cf570
44 Nc6fc024973334dd0a68507673f23a1f8
45 sg:journal.1052482
46 schema:name Quiver theories for moduli spaces of classical group nilpotent orbits
47 schema:pagination 130
48 schema:productId N26d49c7a3fa84f92bd4011d2a9f6e1b1
49 N5843ec296022480aaa0b03594b5c04ca
50 Nc9740e8b5ad44585b598674a32569f89
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
52 https://doi.org/10.1007/jhep06(2016)130
53 schema:sdDatePublished 2019-04-11T13:11
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Ne1365b8dfb76484aab66e8c4b5f515b5
56 schema:url https://link.springer.com/10.1007%2FJHEP06%282016%29130
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N26d49c7a3fa84f92bd4011d2a9f6e1b1 schema:name dimensions_id
61 schema:value pub.1002377219
62 rdf:type schema:PropertyValue
63 N32d4fb2c696945aaaf84c81b775cf570 schema:volumeNumber 2016
64 rdf:type schema:PublicationVolume
65 N3a03dc998c0f44ab8cd386234ff7bbd4 rdf:first sg:person.014000413552.15
66 rdf:rest rdf:nil
67 N5843ec296022480aaa0b03594b5c04ca schema:name readcube_id
68 schema:value 0b519af4eccdcbdba82bc7b2d34eea59edfecf246fef1493d81ec8c2b977e182
69 rdf:type schema:PropertyValue
70 N9265c0d3841a40958496a800887ff439 rdf:first sg:person.012155553275.80
71 rdf:rest N3a03dc998c0f44ab8cd386234ff7bbd4
72 Nc6fc024973334dd0a68507673f23a1f8 schema:issueNumber 6
73 rdf:type schema:PublicationIssue
74 Nc9740e8b5ad44585b598674a32569f89 schema:name doi
75 schema:value 10.1007/jhep06(2016)130
76 rdf:type schema:PropertyValue
77 Ne1365b8dfb76484aab66e8c4b5f515b5 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
83 schema:name Pure Mathematics
84 rdf:type schema:DefinedTerm
85 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep06(2016)130
86 rdf:type schema:MonetaryGrant
87 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep06(2016)130
88 rdf:type schema:MonetaryGrant
89 sg:journal.1052482 schema:issn 1029-8479
90 1126-6708
91 schema:name Journal of High Energy Physics
92 rdf:type schema:Periodical
93 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
94 schema:familyName Hanany
95 schema:givenName Amihay
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
97 rdf:type schema:Person
98 sg:person.014000413552.15 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
99 schema:familyName Kalveks
100 schema:givenName Rudolph
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15
102 rdf:type schema:Person
103 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
104 https://doi.org/10.1007/bf02565876
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/jhep01(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
107 https://doi.org/10.1007/jhep01(2012)079
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
110 https://doi.org/10.1007/jhep01(2013)070
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
113 https://doi.org/10.1007/jhep01(2014)005
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
116 https://doi.org/10.1007/jhep01(2015)150
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/jhep04(2015)173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067337
119 https://doi.org/10.1007/jhep04(2015)173
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
122 https://doi.org/10.1007/jhep06(2010)100
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/jhep08(2010)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022851903
125 https://doi.org/10.1007/jhep08(2010)072
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/jhep08(2015)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208042
128 https://doi.org/10.1007/jhep08(2015)106
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
131 https://doi.org/10.1007/jhep09(2010)063
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
134 https://doi.org/10.1007/jhep09(2014)178
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
137 https://doi.org/10.1007/jhep10(2014)152
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/jhep11(2013)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027167895
140 https://doi.org/10.1007/jhep11(2013)189
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
143 https://doi.org/10.1007/jhep12(2014)103
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
146 https://doi.org/10.1007/jhep12(2015)118
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
149 https://doi.org/10.1007/s00220-012-1607-8
150 rdf:type schema:CreativeWork
151 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
152 https://doi.org/10.1088/1126-6708/2000/11/033
153 rdf:type schema:CreativeWork
154 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
155 https://doi.org/10.1088/1126-6708/2002/12/044
156 rdf:type schema:CreativeWork
157 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
158 https://doi.org/10.1088/1126-6708/2007/03/090
159 rdf:type schema:CreativeWork
160 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
161 https://doi.org/10.1088/1126-6708/2007/11/050
162 rdf:type schema:CreativeWork
163 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
164 https://doi.org/10.1088/1126-6708/2008/05/099
165 rdf:type schema:CreativeWork
166 sg:pub.10.1088/1126-6708/2008/10/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453259
167 https://doi.org/10.1088/1126-6708/2008/10/012
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0370-2693(96)01088-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049623391
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0375-9601(78)90141-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010707592
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0550-3213(95)00625-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051449678
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.nuclphysb.2009.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008330346
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0550-3213(97)80030-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000672730
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1090/trans2/006/02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089182964
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1098/rspa.1978.0143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024710827
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1142/s0129167x96000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903501
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1142/s0217751x1340006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062927113
186 rdf:type schema:CreativeWork
187 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
188 rdf:type schema:CreativeWork
189 https://doi.org/10.4310/jdg/1214445316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459797
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
192 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...