Quiver theories for moduli spaces of classical group nilpotent orbits View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06-21

AUTHORS

Amihay Hanany, Rudolph Kalveks

ABSTRACT

We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials. More... »

PAGES

130

References to SciGraph publications

  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aperçu in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-18. Complete intersection moduli spaces in gauge theories in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-30. Tinkertoys for the twisted D-series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-13. Extremal solutions of the S3 model and nilpotent orbits of G2(2) in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2008-10-03. Counting gauge invariant operators in SQCD with classical gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-11-26. Redeeming bad theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-17. Construction and deconstruction of single instanton Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-21. Counting the massive vacua of N=1∗ super Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep06(2016)130

    DOI

    http://dx.doi.org/10.1007/jhep06(2016)130

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002377219


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalveks", 
            "givenName": "Rudolph", 
            "id": "sg:person.014000413552.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2010)072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022851903", 
              "https://doi.org/10.1007/jhep08(2010)072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020208042", 
              "https://doi.org/10.1007/jhep08(2015)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043468416", 
              "https://doi.org/10.1007/jhep01(2012)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2013)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027167895", 
              "https://doi.org/10.1007/jhep11(2013)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050067337", 
              "https://doi.org/10.1007/jhep04(2015)173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037453259", 
              "https://doi.org/10.1088/1126-6708/2008/10/012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06-21", 
        "datePublishedReg": "2016-06-21", 
        "description": "We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperK\u00e4hler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep06(2016)130", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "keywords": [
          "nilpotent orbits", 
          "moduli space", 
          "generating function", 
          "Hilbert series", 
          "quiver theories", 
          "affine Dynkin diagrams", 
          "minimal nilpotent orbit", 
          "Hall\u2013Littlewood polynomials", 
          "hyperk\u00e4hler quotient", 
          "Dynkin diagram", 
          "irreducible representations", 
          "Higgs branch", 
          "Coulomb branch", 
          "canonical partition", 
          "systematic construction", 
          "branch constructions", 
          "mirror symmetry", 
          "rank 4", 
          "quivers", 
          "orbit", 
          "Littlewood polynomials", 
          "theory", 
          "theory construction", 
          "space", 
          "earlier work", 
          "systematic framework", 
          "polynomials", 
          "duality", 
          "symmetry", 
          "complete treatment", 
          "construction", 
          "function", 
          "Higgs", 
          "diagram", 
          "branches", 
          "representation", 
          "partition", 
          "decomposition", 
          "quotient", 
          "terms", 
          "framework", 
          "series", 
          "gap", 
          "work", 
          "modulus", 
          "topic", 
          "character", 
          "aspects", 
          "perspective", 
          "relationship", 
          "treatment", 
          "paper"
        ], 
        "name": "Quiver theories for moduli spaces of classical group nilpotent orbits", 
        "pagination": "130", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002377219"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep06(2016)130"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep06(2016)130", 
          "https://app.dimensions.ai/details/publication/pub.1002377219"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_681.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep06(2016)130"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2016)130'


     

    This table displays all metadata directly associated to this object as RDF triples.

    208 TRIPLES      21 PREDICATES      98 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep06(2016)130 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7fee9419fefe481aab31d73ef68d5ce2
    4 schema:citation sg:pub.10.1007/bf02565876
    5 sg:pub.10.1007/jhep01(2012)079
    6 sg:pub.10.1007/jhep01(2013)070
    7 sg:pub.10.1007/jhep01(2014)005
    8 sg:pub.10.1007/jhep01(2015)150
    9 sg:pub.10.1007/jhep04(2015)173
    10 sg:pub.10.1007/jhep06(2010)100
    11 sg:pub.10.1007/jhep08(2010)072
    12 sg:pub.10.1007/jhep08(2015)106
    13 sg:pub.10.1007/jhep09(2010)063
    14 sg:pub.10.1007/jhep09(2014)178
    15 sg:pub.10.1007/jhep10(2014)152
    16 sg:pub.10.1007/jhep11(2013)189
    17 sg:pub.10.1007/jhep12(2014)103
    18 sg:pub.10.1007/jhep12(2015)118
    19 sg:pub.10.1007/s00220-012-1607-8
    20 sg:pub.10.1088/1126-6708/2000/11/033
    21 sg:pub.10.1088/1126-6708/2002/12/044
    22 sg:pub.10.1088/1126-6708/2007/03/090
    23 sg:pub.10.1088/1126-6708/2007/11/050
    24 sg:pub.10.1088/1126-6708/2008/05/099
    25 sg:pub.10.1088/1126-6708/2008/10/012
    26 schema:datePublished 2016-06-21
    27 schema:datePublishedReg 2016-06-21
    28 schema:description We approach the topic of Classical group nilpotent orbits from the perspective of the moduli spaces of quivers, described in terms of Hilbert series and generating functions. We review the established Higgs and Coulomb branch quiver theory constructions for A series nilpotent orbits. We present systematic constructions for BCD series nilpotent orbits on the Higgs branches of quiver theories defined by canonical partitions; this paper collects earlier work into a systematic framework, filling in gaps and providing a complete treatment. We find new Coulomb branch constructions for above minimal nilpotent orbits, including some based upon twisted affine Dynkin diagrams. We also discuss aspects of 3d mirror symmetry between these Higgs and Coulomb branch constructions and explore dualities and other relationships, such as HyperKähler quotients, between quivers. We analyse all Classical group nilpotent orbit moduli spaces up to rank 4 by giving their unrefined Hilbert series and the Highest Weight Generating functions for their decompositions into characters of irreducible representations and/or Hall Littlewood polynomials.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N16ddd5dac5af4de3a640a6c021c2530a
    32 N904c48793a034c3a935ef2b1dc4914f8
    33 sg:journal.1052482
    34 schema:keywords Coulomb branch
    35 Dynkin diagram
    36 Hall–Littlewood polynomials
    37 Higgs
    38 Higgs branch
    39 Hilbert series
    40 Littlewood polynomials
    41 affine Dynkin diagrams
    42 aspects
    43 branch constructions
    44 branches
    45 canonical partition
    46 character
    47 complete treatment
    48 construction
    49 decomposition
    50 diagram
    51 duality
    52 earlier work
    53 framework
    54 function
    55 gap
    56 generating function
    57 hyperkähler quotient
    58 irreducible representations
    59 minimal nilpotent orbit
    60 mirror symmetry
    61 moduli space
    62 modulus
    63 nilpotent orbits
    64 orbit
    65 paper
    66 partition
    67 perspective
    68 polynomials
    69 quiver theories
    70 quivers
    71 quotient
    72 rank 4
    73 relationship
    74 representation
    75 series
    76 space
    77 symmetry
    78 systematic construction
    79 systematic framework
    80 terms
    81 theory
    82 theory construction
    83 topic
    84 treatment
    85 work
    86 schema:name Quiver theories for moduli spaces of classical group nilpotent orbits
    87 schema:pagination 130
    88 schema:productId N366ad72a42e24955b0aa848b352542d3
    89 N503f3266f804492392bbffe24de12311
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    91 https://doi.org/10.1007/jhep06(2016)130
    92 schema:sdDatePublished 2022-11-24T21:00
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N229c76f22f724a1c9780fe554e46c799
    95 schema:url https://doi.org/10.1007/jhep06(2016)130
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N16ddd5dac5af4de3a640a6c021c2530a schema:volumeNumber 2016
    100 rdf:type schema:PublicationVolume
    101 N229c76f22f724a1c9780fe554e46c799 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N366ad72a42e24955b0aa848b352542d3 schema:name doi
    104 schema:value 10.1007/jhep06(2016)130
    105 rdf:type schema:PropertyValue
    106 N503f3266f804492392bbffe24de12311 schema:name dimensions_id
    107 schema:value pub.1002377219
    108 rdf:type schema:PropertyValue
    109 N7fee9419fefe481aab31d73ef68d5ce2 rdf:first sg:person.012155553275.80
    110 rdf:rest N8761410ba4c842a08169d7a5f6446628
    111 N8761410ba4c842a08169d7a5f6446628 rdf:first sg:person.014000413552.15
    112 rdf:rest rdf:nil
    113 N904c48793a034c3a935ef2b1dc4914f8 schema:issueNumber 6
    114 rdf:type schema:PublicationIssue
    115 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Mathematical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Pure Mathematics
    120 rdf:type schema:DefinedTerm
    121 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep06(2016)130
    122 rdf:type schema:MonetaryGrant
    123 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep06(2016)130
    124 rdf:type schema:MonetaryGrant
    125 sg:journal.1052482 schema:issn 1029-8479
    126 1126-6708
    127 schema:name Journal of High Energy Physics
    128 schema:publisher Springer Nature
    129 rdf:type schema:Periodical
    130 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    131 schema:familyName Hanany
    132 schema:givenName Amihay
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    134 rdf:type schema:Person
    135 sg:person.014000413552.15 schema:affiliation grid-institutes:grid.7445.2
    136 schema:familyName Kalveks
    137 schema:givenName Rudolph
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014000413552.15
    139 rdf:type schema:Person
    140 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    141 https://doi.org/10.1007/bf02565876
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep01(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
    144 https://doi.org/10.1007/jhep01(2012)079
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    147 https://doi.org/10.1007/jhep01(2013)070
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    150 https://doi.org/10.1007/jhep01(2014)005
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    153 https://doi.org/10.1007/jhep01(2015)150
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep04(2015)173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050067337
    156 https://doi.org/10.1007/jhep04(2015)173
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    159 https://doi.org/10.1007/jhep06(2010)100
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep08(2010)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022851903
    162 https://doi.org/10.1007/jhep08(2010)072
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep08(2015)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208042
    165 https://doi.org/10.1007/jhep08(2015)106
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    168 https://doi.org/10.1007/jhep09(2010)063
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    171 https://doi.org/10.1007/jhep09(2014)178
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    174 https://doi.org/10.1007/jhep10(2014)152
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep11(2013)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027167895
    177 https://doi.org/10.1007/jhep11(2013)189
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    180 https://doi.org/10.1007/jhep12(2014)103
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
    183 https://doi.org/10.1007/jhep12(2015)118
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    186 https://doi.org/10.1007/s00220-012-1607-8
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    189 https://doi.org/10.1088/1126-6708/2000/11/033
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    192 https://doi.org/10.1088/1126-6708/2002/12/044
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    195 https://doi.org/10.1088/1126-6708/2007/03/090
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    198 https://doi.org/10.1088/1126-6708/2007/11/050
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    201 https://doi.org/10.1088/1126-6708/2008/05/099
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1088/1126-6708/2008/10/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453259
    204 https://doi.org/10.1088/1126-6708/2008/10/012
    205 rdf:type schema:CreativeWork
    206 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    207 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    208 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...