Thermodynamics of Einstein-Proca AdS black holes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

Hai-Shan Liu, H. Lü, C. N. Pope

ABSTRACT

We study static spherically-symmetric solutions of the Einstein-Proca equations in the presence of a negative cosmological constant. We show that the theory admits solutions describing both black holes and also solitons in an asymptotically AdS background. Interesting subtleties can arise in the computation of the mass of the solutions and also in the derivation of the first law of thermodynamics. We make use of holographic renormalisation in order to calculate the mass, even in cases where the solutions have a rather slow approach to the asymptotic AdS geometry. By using the procedure developed by Wald, we derive the first law of thermodynamics for the black hole and soliton solutions. This includes a non-trivial contribution associated with the Proca “charge”. The solutions cannot be found analytically, and so we make use of numerical integration techniques to demonstrate their existence. More... »

PAGES

109

References to SciGraph publications

  • 1999-12. A Stress Tensor for Anti-de Sitter Gravity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-11. AdS dyonic black hole and its thermodynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-03. Holographic Reconstruction of Spacetime¶and Renormalization in the AdS/CFT Correspondence in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep06(2014)109

    DOI

    http://dx.doi.org/10.1007/jhep06(2014)109

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047956978


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Hai-Shan", 
            "id": "sg:person.010047677665.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Normal University", 
              "id": "https://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00fc", 
            "givenName": "H.", 
            "id": "sg:person.012136555175.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.", 
                "DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pope", 
            "givenName": "C. N.", 
            "id": "sg:person.07512552121.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.physletb.2014.01.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002673748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.046002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012286063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.046002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012286063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.104001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016697327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.104001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016697327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2013)033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021820889", 
              "https://doi.org/10.1007/jhep11(2013)033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023248422", 
              "https://doi.org/10.1007/s002200050764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(82)90643-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029389531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(82)90643-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029389531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/17/2/101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030985299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.011602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031927826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.011602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031927826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032503686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032503686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.106005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.106005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/1/4/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040488265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(98)00377-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044092489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(99)00549-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045638082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(82)90116-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046685378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.044011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049333151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.044011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049333151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051944080", 
              "https://doi.org/10.1007/s002200100381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456894"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06", 
        "datePublishedReg": "2014-06-01", 
        "description": "We study static spherically-symmetric solutions of the Einstein-Proca equations in the presence of a negative cosmological constant. We show that the theory admits solutions describing both black holes and also solitons in an asymptotically AdS background. Interesting subtleties can arise in the computation of the mass of the solutions and also in the derivation of the first law of thermodynamics. We make use of holographic renormalisation in order to calculate the mass, even in cases where the solutions have a rather slow approach to the asymptotic AdS geometry. By using the procedure developed by Wald, we derive the first law of thermodynamics for the black hole and soliton solutions. This includes a non-trivial contribution associated with the Proca \u201ccharge\u201d. The solutions cannot be found analytically, and so we make use of numerical integration techniques to demonstrate their existence.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep06(2014)109", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "name": "Thermodynamics of Einstein-Proca AdS black holes", 
        "pagination": "109", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e474e24fcec52534bf7d19b9b50d8e792f50e34930c73c3602bd76a8ea7d715e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep06(2014)109"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047956978"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep06(2014)109", 
          "https://app.dimensions.ai/details/publication/pub.1047956978"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000483.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP06(2014)109"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)109'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)109'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)109'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)109'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep06(2014)109 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N098703fabc08409c9e25e1707530448b
    4 schema:citation sg:pub.10.1007/jhep11(2013)033
    5 sg:pub.10.1007/s002200050764
    6 sg:pub.10.1007/s002200100381
    7 https://doi.org/10.1016/0003-4916(82)90116-6
    8 https://doi.org/10.1016/0370-2693(82)90643-8
    9 https://doi.org/10.1016/j.physletb.2014.01.056
    10 https://doi.org/10.1016/s0370-2693(98)00377-3
    11 https://doi.org/10.1016/s0550-3213(99)00549-0
    12 https://doi.org/10.1088/0264-9381/1/4/002
    13 https://doi.org/10.1088/0264-9381/17/2/101
    14 https://doi.org/10.1103/physrevd.50.846
    15 https://doi.org/10.1103/physrevd.60.046002
    16 https://doi.org/10.1103/physrevd.60.104001
    17 https://doi.org/10.1103/physrevd.78.106005
    18 https://doi.org/10.1103/physrevd.86.044011
    19 https://doi.org/10.1103/physrevlett.102.011602
    20 https://doi.org/10.4310/atmp.1998.v2.n2.a1
    21 https://doi.org/10.4310/atmp.1998.v2.n2.a2
    22 schema:datePublished 2014-06
    23 schema:datePublishedReg 2014-06-01
    24 schema:description We study static spherically-symmetric solutions of the Einstein-Proca equations in the presence of a negative cosmological constant. We show that the theory admits solutions describing both black holes and also solitons in an asymptotically AdS background. Interesting subtleties can arise in the computation of the mass of the solutions and also in the derivation of the first law of thermodynamics. We make use of holographic renormalisation in order to calculate the mass, even in cases where the solutions have a rather slow approach to the asymptotic AdS geometry. By using the procedure developed by Wald, we derive the first law of thermodynamics for the black hole and soliton solutions. This includes a non-trivial contribution associated with the Proca “charge”. The solutions cannot be found analytically, and so we make use of numerical integration techniques to demonstrate their existence.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N6047ba4a38be4c4d9b880e7f3734d5e4
    29 N971ccfbb77504f209456fd810afab27c
    30 sg:journal.1052482
    31 schema:name Thermodynamics of Einstein-Proca AdS black holes
    32 schema:pagination 109
    33 schema:productId N7a4a24ae99354c9e9ac1ec8d24e22dbb
    34 N857daa8304d34a4aa0a9c157091b89bd
    35 Naed62fc50353447fabe646da41bbda6b
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047956978
    37 https://doi.org/10.1007/jhep06(2014)109
    38 schema:sdDatePublished 2019-04-10T16:34
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nfff84fc69b0b44d18959d04cd6747d02
    41 schema:url http://link.springer.com/10.1007/JHEP06(2014)109
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N098703fabc08409c9e25e1707530448b rdf:first sg:person.010047677665.03
    46 rdf:rest N5ece056480734df087c977e499e0c23b
    47 N5ece056480734df087c977e499e0c23b rdf:first sg:person.012136555175.11
    48 rdf:rest Nfd0430985c4e4c588aba42baaaeca0fe
    49 N6047ba4a38be4c4d9b880e7f3734d5e4 schema:volumeNumber 2014
    50 rdf:type schema:PublicationVolume
    51 N7a4a24ae99354c9e9ac1ec8d24e22dbb schema:name readcube_id
    52 schema:value e474e24fcec52534bf7d19b9b50d8e792f50e34930c73c3602bd76a8ea7d715e
    53 rdf:type schema:PropertyValue
    54 N857daa8304d34a4aa0a9c157091b89bd schema:name dimensions_id
    55 schema:value pub.1047956978
    56 rdf:type schema:PropertyValue
    57 N971ccfbb77504f209456fd810afab27c schema:issueNumber 6
    58 rdf:type schema:PublicationIssue
    59 Naed62fc50353447fabe646da41bbda6b schema:name doi
    60 schema:value 10.1007/jhep06(2014)109
    61 rdf:type schema:PropertyValue
    62 Nfd0430985c4e4c588aba42baaaeca0fe rdf:first sg:person.07512552121.35
    63 rdf:rest rdf:nil
    64 Nfff84fc69b0b44d18959d04cd6747d02 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1052482 schema:issn 1029-8479
    73 1126-6708
    74 schema:name Journal of High Energy Physics
    75 rdf:type schema:Periodical
    76 sg:person.010047677665.03 schema:affiliation https://www.grid.ac/institutes/grid.469325.f
    77 schema:familyName Liu
    78 schema:givenName Hai-Shan
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047677665.03
    80 rdf:type schema:Person
    81 sg:person.012136555175.11 schema:affiliation https://www.grid.ac/institutes/grid.20513.35
    82 schema:familyName
    83 schema:givenName H.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11
    85 rdf:type schema:Person
    86 sg:person.07512552121.35 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    87 schema:familyName Pope
    88 schema:givenName C. N.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07512552121.35
    90 rdf:type schema:Person
    91 sg:pub.10.1007/jhep11(2013)033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021820889
    92 https://doi.org/10.1007/jhep11(2013)033
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s002200050764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023248422
    95 https://doi.org/10.1007/s002200050764
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s002200100381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051944080
    98 https://doi.org/10.1007/s002200100381
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1016/0003-4916(82)90116-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046685378
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/0370-2693(82)90643-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029389531
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.physletb.2014.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002673748
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/s0370-2693(98)00377-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044092489
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/s0550-3213(99)00549-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045638082
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1088/0264-9381/1/4/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040488265
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1088/0264-9381/17/2/101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030985299
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevd.50.846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032503686
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevd.60.046002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012286063
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physrevd.60.104001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016697327
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physrevd.78.106005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182093
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrevd.86.044011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049333151
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physrevlett.102.011602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031927826
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.4310/atmp.1998.v2.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456893
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.4310/atmp.1998.v2.n2.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456894
    129 rdf:type schema:CreativeWork
    130 https://www.grid.ac/institutes/grid.20513.35 schema:alternateName Beijing Normal University
    131 schema:name Department of Physics, Beijing Normal University, 100875, Beijing, China
    132 rdf:type schema:Organization
    133 https://www.grid.ac/institutes/grid.469325.f schema:alternateName Zhejiang University of Technology
    134 schema:name Institute for Advanced Physics & Mathematics, Zhejiang University of Technology, 310023, Hangzhou, China
    135 rdf:type schema:Organization
    136 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    137 schema:name DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, CB3 OWA, Cambridge, U.K.
    138 George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, 77843, College Station, TX, U.S.A.
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...