The α′ expansion on a compact manifold of exceptional holonomy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

Katrin Becker, Daniel Robbins, Edward Witten

ABSTRACT

In the approximation corresponding to the classical Einstein equations, which is valid at large radius, string theory compactification on a compact manifold M of G2 or Spin(7) holonomy gives a supersymmetric vacuum in three or two dimensions. Do α′ corrections to the Einstein equations disturb this statement? Explicitly analyzing the leading correction, we show that the metric of M can be adjusted to maintain supersymmetry. Beyond leading order, a general argument based on low energy effective field theory in spacetime implies that this is true exactly (not just to all finite orders in α′). A more elaborate field theory argument that includes the massive Kaluza-Klein modes matches the structure found in explicit calculations. In M-theory compactification on a manifold M of G2 or Spin(7) holonomy, similar results hold to all orders in the inverse radius of M — but not exactly. The classical moduli space of G2 metrics on a manifold M is known to be locally a Lagrangian submanifold of H3(M,) ⊕ H4(M,). We show that this remains valid to all orders in the α′ or inverse radius expansion. More... »

PAGES

51

References to SciGraph publications

  • 2002-07-24. A Note on Fluxes and Superpotentials in M-theory Compactifications on Manifolds of G2 Holonomy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-07-26. Supersymmetry breaking, M-theory and fluxes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-07-02. Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G-structures in JOURNAL OF HIGH ENERGY PHYSICS
  • 1995-09. Superstrings and manifolds of exceptional holonomy in SELECTA MATHEMATICA
  • 2004-10-09. Supersymmetric deformations of G2 manifolds from higher-order corrections to string and M-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-07-28. String and M-theory deformations of manifolds with special holonomy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-04. Local Geometry of the G2 Moduli Space in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-05-02. A note on compactifications on spin(7)-holonomy manifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep06(2014)051

    DOI

    http://dx.doi.org/10.1007/jhep06(2014)051

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020158277


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Texas A&M University", 
              "id": "https://www.grid.ac/institutes/grid.264756.4", 
              "name": [
                "George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, 77843-4242, College Station, TX, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Becker", 
            "givenName": "Katrin", 
            "id": "sg:person.014560713517.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560713517.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Amsterdam", 
              "id": "https://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "Institute for Theoretical Physics, University of Amsterdam, Postbus 94485, 1090 GL, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robbins", 
            "givenName": "Daniel", 
            "id": "sg:person.010073471271.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073471271.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A", 
                "Department of Physics, University of Washington, 98195, Seattle, Washington, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Witten", 
            "givenName": "Edward", 
            "id": "sg:person.016240210261.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2005/07/075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012083200", 
              "https://doi.org/10.1088/1126-6708/2005/07/075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0595-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014175520", 
              "https://doi.org/10.1007/s00220-008-0595-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0595-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014175520", 
              "https://doi.org/10.1007/s00220-008-0595-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/07/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017754950", 
              "https://doi.org/10.1088/1126-6708/2003/07/004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/05/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019953674", 
              "https://doi.org/10.1088/1126-6708/2001/05/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01671569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025789522", 
              "https://doi.org/10.1007/bf01671569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90927-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026338852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(85)90927-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026338852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91394-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029787703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91394-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029787703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/07/038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033172546", 
              "https://doi.org/10.1088/1126-6708/2001/07/038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00419-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033843145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(87)90395-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036432509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(87)90395-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036432509"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(86)90202-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037958162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(86)90202-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037958162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/07/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040559180", 
              "https://doi.org/10.1088/1126-6708/2002/07/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(84)90592-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046871350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)90408-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050054159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)90408-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050054159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/10/019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052090627", 
              "https://doi.org/10.1088/1126-6708/2004/10/019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/han020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059989131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.57.2625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.57.2625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060794173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x10004132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062898211"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06", 
        "datePublishedReg": "2014-06-01", 
        "description": "In the approximation corresponding to the classical Einstein equations, which is valid at large radius, string theory compactification on a compact manifold M of G2 or Spin(7) holonomy gives a supersymmetric vacuum in three or two dimensions. Do \u03b1\u2032 corrections to the Einstein equations disturb this statement? Explicitly analyzing the leading correction, we show that the metric of M can be adjusted to maintain supersymmetry. Beyond leading order, a general argument based on low energy effective field theory in spacetime implies that this is true exactly (not just to all finite orders in \u03b1\u2032). A more elaborate field theory argument that includes the massive Kaluza-Klein modes matches the structure found in explicit calculations. In M-theory compactification on a manifold M of G2 or Spin(7) holonomy, similar results hold to all orders in the inverse radius of M \u2014 but not exactly. The classical moduli space of G2 metrics on a manifold M is known to be locally a Lagrangian submanifold of H3(M,) \u2295 H4(M,). We show that this remains valid to all orders in the \u03b1\u2032 or inverse radius expansion.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep06(2014)051", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "name": "The \u03b1\u2032 expansion on a compact manifold of exceptional holonomy", 
        "pagination": "51", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "600c1decbba6d3e54e5c76191b9d6b39a21c5fa95300914df98565ea40b835b8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep06(2014)051"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020158277"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep06(2014)051", 
          "https://app.dimensions.ai/details/publication/pub.1020158277"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FJHEP06%282014%29051"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)051'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)051'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)051'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2014)051'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep06(2014)051 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3edf05ee804a4161a02c488a059d23f9
    4 schema:citation sg:pub.10.1007/bf01671569
    5 sg:pub.10.1007/s00220-008-0595-1
    6 sg:pub.10.1088/1126-6708/2001/05/003
    7 sg:pub.10.1088/1126-6708/2001/07/038
    8 sg:pub.10.1088/1126-6708/2002/07/046
    9 sg:pub.10.1088/1126-6708/2003/07/004
    10 sg:pub.10.1088/1126-6708/2004/10/019
    11 sg:pub.10.1088/1126-6708/2005/07/075
    12 https://doi.org/10.1016/0370-2693(85)90927-x
    13 https://doi.org/10.1016/0370-2693(86)90408-9
    14 https://doi.org/10.1016/0370-2693(86)91394-8
    15 https://doi.org/10.1016/0550-3213(84)90592-3
    16 https://doi.org/10.1016/0550-3213(86)90202-6
    17 https://doi.org/10.1016/0550-3213(87)90395-6
    18 https://doi.org/10.1016/s0550-3213(01)00419-9
    19 https://doi.org/10.1093/qmath/han020
    20 https://doi.org/10.1103/physrevlett.57.2625
    21 https://doi.org/10.1142/s0129055x10004132
    22 schema:datePublished 2014-06
    23 schema:datePublishedReg 2014-06-01
    24 schema:description In the approximation corresponding to the classical Einstein equations, which is valid at large radius, string theory compactification on a compact manifold M of G2 or Spin(7) holonomy gives a supersymmetric vacuum in three or two dimensions. Do α′ corrections to the Einstein equations disturb this statement? Explicitly analyzing the leading correction, we show that the metric of M can be adjusted to maintain supersymmetry. Beyond leading order, a general argument based on low energy effective field theory in spacetime implies that this is true exactly (not just to all finite orders in α′). A more elaborate field theory argument that includes the massive Kaluza-Klein modes matches the structure found in explicit calculations. In M-theory compactification on a manifold M of G2 or Spin(7) holonomy, similar results hold to all orders in the inverse radius of M — but not exactly. The classical moduli space of G2 metrics on a manifold M is known to be locally a Lagrangian submanifold of H3(M,) ⊕ H4(M,). We show that this remains valid to all orders in the α′ or inverse radius expansion.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N92762af34107497491f53cf72d44a639
    29 Nb304b23b700f416aafd922dbbe917639
    30 sg:journal.1052482
    31 schema:name The α′ expansion on a compact manifold of exceptional holonomy
    32 schema:pagination 51
    33 schema:productId N556f1113586a4a90a7ec880b083c6959
    34 N614fd8278ab344c5af2f59675befd8dc
    35 N72aeeb1639f44347b7c9821b446c93e9
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020158277
    37 https://doi.org/10.1007/jhep06(2014)051
    38 schema:sdDatePublished 2019-04-10T15:51
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N94e5ff65c8004321a9de6c2e68f098eb
    41 schema:url http://link.springer.com/10.1007%2FJHEP06%282014%29051
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N3032c5a5d79b4943b2f6e64658bc362b rdf:first sg:person.010073471271.51
    46 rdf:rest N3d9c7054504f49aab1dee28e92484579
    47 N3d9c7054504f49aab1dee28e92484579 rdf:first sg:person.016240210261.17
    48 rdf:rest rdf:nil
    49 N3edf05ee804a4161a02c488a059d23f9 rdf:first sg:person.014560713517.70
    50 rdf:rest N3032c5a5d79b4943b2f6e64658bc362b
    51 N556f1113586a4a90a7ec880b083c6959 schema:name dimensions_id
    52 schema:value pub.1020158277
    53 rdf:type schema:PropertyValue
    54 N614fd8278ab344c5af2f59675befd8dc schema:name readcube_id
    55 schema:value 600c1decbba6d3e54e5c76191b9d6b39a21c5fa95300914df98565ea40b835b8
    56 rdf:type schema:PropertyValue
    57 N72aeeb1639f44347b7c9821b446c93e9 schema:name doi
    58 schema:value 10.1007/jhep06(2014)051
    59 rdf:type schema:PropertyValue
    60 N92762af34107497491f53cf72d44a639 schema:volumeNumber 2014
    61 rdf:type schema:PublicationVolume
    62 N94e5ff65c8004321a9de6c2e68f098eb schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Nb304b23b700f416aafd922dbbe917639 schema:issueNumber 6
    65 rdf:type schema:PublicationIssue
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Pure Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1052482 schema:issn 1029-8479
    73 1126-6708
    74 schema:name Journal of High Energy Physics
    75 rdf:type schema:Periodical
    76 sg:person.010073471271.51 schema:affiliation https://www.grid.ac/institutes/grid.7177.6
    77 schema:familyName Robbins
    78 schema:givenName Daniel
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010073471271.51
    80 rdf:type schema:Person
    81 sg:person.014560713517.70 schema:affiliation https://www.grid.ac/institutes/grid.264756.4
    82 schema:familyName Becker
    83 schema:givenName Katrin
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560713517.70
    85 rdf:type schema:Person
    86 sg:person.016240210261.17 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    87 schema:familyName Witten
    88 schema:givenName Edward
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016240210261.17
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf01671569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025789522
    92 https://doi.org/10.1007/bf01671569
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00220-008-0595-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014175520
    95 https://doi.org/10.1007/s00220-008-0595-1
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1088/1126-6708/2001/05/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019953674
    98 https://doi.org/10.1088/1126-6708/2001/05/003
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1088/1126-6708/2001/07/038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033172546
    101 https://doi.org/10.1088/1126-6708/2001/07/038
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1088/1126-6708/2002/07/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040559180
    104 https://doi.org/10.1088/1126-6708/2002/07/046
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1088/1126-6708/2003/07/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017754950
    107 https://doi.org/10.1088/1126-6708/2003/07/004
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1088/1126-6708/2004/10/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052090627
    110 https://doi.org/10.1088/1126-6708/2004/10/019
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1088/1126-6708/2005/07/075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012083200
    113 https://doi.org/10.1088/1126-6708/2005/07/075
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0370-2693(85)90927-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026338852
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0370-2693(86)90408-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050054159
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/0370-2693(86)91394-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029787703
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/0550-3213(84)90592-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046871350
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0550-3213(86)90202-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037958162
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0550-3213(87)90395-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036432509
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/s0550-3213(01)00419-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033843145
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1093/qmath/han020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059989131
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevlett.57.2625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794173
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1142/s0129055x10004132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898211
    134 rdf:type schema:CreativeWork
    135 https://www.grid.ac/institutes/grid.264756.4 schema:alternateName Texas A&M University
    136 schema:name George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, 77843-4242, College Station, TX, U.S.A
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
    139 schema:name Department of Physics, University of Washington, 98195, Seattle, Washington, U.S.A
    140 School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A
    141 rdf:type schema:Organization
    142 https://www.grid.ac/institutes/grid.7177.6 schema:alternateName University of Amsterdam
    143 schema:name Institute for Theoretical Physics, University of Amsterdam, Postbus 94485, 1090 GL, Amsterdam, The Netherlands
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...