New 1/N expansions in random tensor models View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-06

AUTHORS

Valentin Bonzom

ABSTRACT

Although random tensor models were introduced twenty years ago, it is only in 2011 that Gurau proved the existence of a 1/N expansion. Here we show that there actually is more than a single 1/N expansion, depending on the dimension. These new expansions can be used to define tensor models for ‘rectangular’ tensors (whose indices have different sizes). In the large N limit, they retain more than the melonic graphs. Still, in most cases, the large N limit is found to be Gaussian, and therefore extends the scope of the universality theorem for large random tensors. Nevertheless, a scaling which leads to non-Gaussian large N limits, in even dimensions, is identified for the first time. More... »

PAGES

62

References to SciGraph publications

Journal

TITLE

Journal of High Energy Physics

ISSUE

6

VOLUME

2013

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep06(2013)062

DOI

http://dx.doi.org/10.1007/jhep06(2013)062

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041325487


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonzom", 
        "givenName": "Valentin", 
        "id": "sg:person.0776126335.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2012.07.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010077706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00023-011-0118-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010637437", 
          "https://doi.org/10.1007/s00023-011-0118-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2011.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017394418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.85.084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020250304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.85.084037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020250304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2013)160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023268239", 
          "https://doi.org/10.1007/jhep03(2013)160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00303-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025461365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2011.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029727308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/95/50004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031471874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2012/09/p09009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033005348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)00084-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036715607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00023-011-0101-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038599974", 
          "https://doi.org/10.1007/s00023-011-0101-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2012.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043978271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5632(05)80015-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047858974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732391001184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732391003055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918399"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "Although random tensor models were introduced twenty years ago, it is only in 2011 that Gurau proved the existence of a 1/N expansion. Here we show that there actually is more than a single 1/N expansion, depending on the dimension. These new expansions can be used to define tensor models for \u2018rectangular\u2019 tensors (whose indices have different sizes). In the large N limit, they retain more than the melonic graphs. Still, in most cases, the large N limit is found to be Gaussian, and therefore extends the scope of the universality theorem for large random tensors. Nevertheless, a scaling which leads to non-Gaussian large N limits, in even dimensions, is identified for the first time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep06(2013)062", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "name": "New 1/N expansions in random tensor models", 
    "pagination": "62", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4dce2ca8454cae4f72e560d2a813e6f38b37e63f801a30ce7b57b0b3092aab6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep06(2013)062"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041325487"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep06(2013)062", 
      "https://app.dimensions.ai/details/publication/pub.1041325487"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FJHEP06%282013%29062"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)062'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)062'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)062'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)062'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep06(2013)062 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5a1122805bdb4a5abe2dbb99121633d8
4 schema:citation sg:pub.10.1007/jhep03(2013)160
5 sg:pub.10.1007/s00023-011-0101-8
6 sg:pub.10.1007/s00023-011-0118-z
7 https://doi.org/10.1016/0370-1573(94)00084-g
8 https://doi.org/10.1016/0550-3213(95)00303-a
9 https://doi.org/10.1016/j.nuclphysb.2011.07.009
10 https://doi.org/10.1016/j.nuclphysb.2011.07.022
11 https://doi.org/10.1016/j.nuclphysb.2012.07.028
12 https://doi.org/10.1016/j.physleta.2012.12.022
13 https://doi.org/10.1016/s0920-5632(05)80015-5
14 https://doi.org/10.1088/1742-5468/2012/09/p09009
15 https://doi.org/10.1103/physrevd.85.084037
16 https://doi.org/10.1142/s0217732391001184
17 https://doi.org/10.1142/s0217732391003055
18 https://doi.org/10.1209/0295-5075/95/50004
19 schema:datePublished 2013-06
20 schema:datePublishedReg 2013-06-01
21 schema:description Although random tensor models were introduced twenty years ago, it is only in 2011 that Gurau proved the existence of a 1/N expansion. Here we show that there actually is more than a single 1/N expansion, depending on the dimension. These new expansions can be used to define tensor models for ‘rectangular’ tensors (whose indices have different sizes). In the large N limit, they retain more than the melonic graphs. Still, in most cases, the large N limit is found to be Gaussian, and therefore extends the scope of the universality theorem for large random tensors. Nevertheless, a scaling which leads to non-Gaussian large N limits, in even dimensions, is identified for the first time.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N448891d062aa4882beb62b5366109581
26 Nee98743b6380425c8b90b28f1686102d
27 sg:journal.1052482
28 schema:name New 1/N expansions in random tensor models
29 schema:pagination 62
30 schema:productId N0b727903d899458193353b20692f9f3f
31 N153556b38bd1431b98aedd8cbc20fae9
32 Nc25386d4e184451e81baf056015046df
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041325487
34 https://doi.org/10.1007/jhep06(2013)062
35 schema:sdDatePublished 2019-04-10T14:10
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nd9986a2f04814f049b65a8a76f0ea3b7
38 schema:url http://link.springer.com/10.1007%2FJHEP06%282013%29062
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0b727903d899458193353b20692f9f3f schema:name readcube_id
43 schema:value c4dce2ca8454cae4f72e560d2a813e6f38b37e63f801a30ce7b57b0b3092aab6
44 rdf:type schema:PropertyValue
45 N153556b38bd1431b98aedd8cbc20fae9 schema:name dimensions_id
46 schema:value pub.1041325487
47 rdf:type schema:PropertyValue
48 N448891d062aa4882beb62b5366109581 schema:volumeNumber 2013
49 rdf:type schema:PublicationVolume
50 N5a1122805bdb4a5abe2dbb99121633d8 rdf:first sg:person.0776126335.37
51 rdf:rest rdf:nil
52 Nc25386d4e184451e81baf056015046df schema:name doi
53 schema:value 10.1007/jhep06(2013)062
54 rdf:type schema:PropertyValue
55 Nd9986a2f04814f049b65a8a76f0ea3b7 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nee98743b6380425c8b90b28f1686102d schema:issueNumber 6
58 rdf:type schema:PublicationIssue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
63 schema:name Statistics
64 rdf:type schema:DefinedTerm
65 sg:journal.1052482 schema:issn 1029-8479
66 1126-6708
67 schema:name Journal of High Energy Physics
68 rdf:type schema:Periodical
69 sg:person.0776126335.37 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
70 schema:familyName Bonzom
71 schema:givenName Valentin
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37
73 rdf:type schema:Person
74 sg:pub.10.1007/jhep03(2013)160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023268239
75 https://doi.org/10.1007/jhep03(2013)160
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/s00023-011-0101-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038599974
78 https://doi.org/10.1007/s00023-011-0101-8
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s00023-011-0118-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010637437
81 https://doi.org/10.1007/s00023-011-0118-z
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0370-1573(94)00084-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1036715607
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0550-3213(95)00303-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025461365
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.nuclphysb.2011.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029727308
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.nuclphysb.2011.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017394418
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.nuclphysb.2012.07.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010077706
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.physleta.2012.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043978271
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0920-5632(05)80015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047858974
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1088/1742-5468/2012/09/p09009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033005348
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevd.85.084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020250304
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1142/s0217732391001184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918212
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s0217732391003055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918399
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1209/0295-5075/95/50004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031471874
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
108 schema:name Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...