Ontology type: schema:ScholarlyArticle Open Access: True
2013-06-10
AUTHORSSebastian Franco, Daniele Galloni, Rak-Kyeong Seong
ABSTRACTWe perform a detailed investigation of Bipartite Field Theories (BFTs), a general class of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 gauge theories which are defined by bipartite graphs. This class of theories is considerably expanded by identifying a new way of assigning gauge symmetries to graphs. A new procedure is introduced in order to determine the toric Calabi-Yau moduli spaces of BFTs. For graphs on a disk, we show that the matroid polytope for the corresponding cell in the Grassmannian coincides with the toric diagram of the BFT moduli space. A systematic BFT prescription for determining graph reductions is presented. We illustrate our ideas in infinite classes of BFTs and introduce various operations for generating new theories from existing ones. Particular emphasis is given to theories associated to non-planar graphs. More... »
PAGES32
http://scigraph.springernature.com/pub.10.1007/jhep06(2013)032
DOIhttp://dx.doi.org/10.1007/jhep06(2013)032
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1006998472
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Particle Physics Phenomenology, Department of Physics, Durham University, DH1 3LE, Durham, United Kingdom",
"id": "http://www.grid.ac/institutes/grid.8250.f",
"name": [
"Institute for Particle Physics Phenomenology, Department of Physics, Durham University, DH1 3LE, Durham, United Kingdom"
],
"type": "Organization"
},
"familyName": "Franco",
"givenName": "Sebastian",
"id": "sg:person.013105053075.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105053075.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Particle Physics Phenomenology, Department of Physics, Durham University, DH1 3LE, Durham, United Kingdom",
"id": "http://www.grid.ac/institutes/grid.8250.f",
"name": [
"Institute for Particle Physics Phenomenology, Department of Physics, Durham University, DH1 3LE, Durham, United Kingdom"
],
"type": "Organization"
},
"familyName": "Galloni",
"givenName": "Daniele",
"id": "sg:person.013526311662.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013526311662.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
],
"type": "Organization"
},
"familyName": "Seong",
"givenName": "Rak-Kyeong",
"id": "sg:person.012116400507.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012116400507.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1088/1126-6708/2003/08/058",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023159499",
"https://doi.org/10.1088/1126-6708/2003/08/058"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2005/06/064",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035683796",
"https://doi.org/10.1088/1126-6708/2005/06/064"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/03/090",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040656476",
"https://doi.org/10.1088/1126-6708/2007/03/090"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/12/088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051078287",
"https://doi.org/10.1088/1126-6708/2007/12/088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11005-008-0255-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007223137",
"https://doi.org/10.1007/s11005-008-0255-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2012)036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038701666",
"https://doi.org/10.1007/jhep09(2012)036"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2010)020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009611379",
"https://doi.org/10.1007/jhep03(2010)020"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2012)020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043846430",
"https://doi.org/10.1007/jhep09(2012)020"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/01/002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026223761",
"https://doi.org/10.1088/1126-6708/1998/01/002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2011)116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044007060",
"https://doi.org/10.1007/jhep09(2011)116"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/09/075",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019170211",
"https://doi.org/10.1088/1126-6708/2007/09/075"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/11/092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022904471",
"https://doi.org/10.1088/1126-6708/2007/11/092"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2012)053",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001161244",
"https://doi.org/10.1007/jhep06(2012)053"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/01/096",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042410190",
"https://doi.org/10.1088/1126-6708/2006/01/096"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/01/128",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006061897",
"https://doi.org/10.1088/1126-6708/2006/01/128"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2011)027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041744620",
"https://doi.org/10.1007/jhep01(2011)027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2002/12/076",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031433556",
"https://doi.org/10.1088/1126-6708/2002/12/076"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2012)106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024225765",
"https://doi.org/10.1007/jhep06(2012)106"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/11/054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029937770",
"https://doi.org/10.1088/1126-6708/2006/11/054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2001/12/035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007275558",
"https://doi.org/10.1088/1126-6708/2001/12/035"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2010)051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031438594",
"https://doi.org/10.1007/jhep06(2010)051"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025337838",
"https://doi.org/10.1007/jhep08(2012)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2001/12/001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040554299",
"https://doi.org/10.1088/1126-6708/2001/12/001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2010)010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049415582",
"https://doi.org/10.1007/jhep06(2010)010"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/10/029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023478259",
"https://doi.org/10.1088/1126-6708/2007/10/029"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2008/08/012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052066191",
"https://doi.org/10.1088/1126-6708/2008/08/012"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2011)057",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028824533",
"https://doi.org/10.1007/jhep09(2011)057"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2005/09/018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010075731",
"https://doi.org/10.1088/1126-6708/2005/09/018"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/11/050",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013703167",
"https://doi.org/10.1088/1126-6708/2007/11/050"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-007-0258-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040519445",
"https://doi.org/10.1007/s00220-007-0258-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2001/08/040",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008510756",
"https://doi.org/10.1088/1126-6708/2001/08/040"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2010)088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032453331",
"https://doi.org/10.1007/jhep01(2010)088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2013)100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036285701",
"https://doi.org/10.1007/jhep01(2013)100"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-06-10",
"datePublishedReg": "2013-06-10",
"description": "We perform a detailed investigation of Bipartite Field Theories (BFTs), a general class of 4d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = 1 gauge theories which are defined by bipartite graphs. This class of theories is considerably expanded by identifying a new way of assigning gauge symmetries to graphs. A new procedure is introduced in order to determine the toric Calabi-Yau moduli spaces of BFTs. For graphs on a disk, we show that the matroid polytope for the corresponding cell in the Grassmannian coincides with the toric diagram of the BFT moduli space. A systematic BFT prescription for determining graph reductions is presented. We illustrate our ideas in infinite classes of BFTs and introduce various operations for generating new theories from existing ones. Particular emphasis is given to theories associated to non-planar graphs.",
"genre": "article",
"id": "sg:pub.10.1007/jhep06(2013)032",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3497925",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2013"
}
],
"keywords": [
"Bipartite field theories",
"field theory",
"moduli space",
"Calabi-Yau moduli space",
"class of theories",
"non-planar graphs",
"matroid polytopes",
"general class",
"gauge theory",
"toric diagram",
"gauge symmetry",
"infinite class",
"bipartite graphs",
"graph reduction",
"graph",
"theory",
"new theory",
"class",
"space",
"polytope",
"symmetry",
"new procedure",
"particular emphasis",
"diagram",
"coincide",
"detailed investigation",
"disk",
"direction",
"one",
"idea",
"new way",
"order",
"new directions",
"operation",
"procedure",
"corresponding cells",
"way",
"emphasis",
"investigation",
"reduction",
"prescription",
"cells"
],
"name": "New directions in bipartite field theories",
"pagination": "32",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1006998472"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep06(2013)032"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep06(2013)032",
"https://app.dimensions.ai/details/publication/pub.1006998472"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_602.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep06(2013)032"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)032'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)032'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)032'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2013)032'
This table displays all metadata directly associated to this object as RDF triples.
254 TRIPLES
21 PREDICATES
100 URIs
58 LITERALS
6 BLANK NODES