Exactly marginal deformations and global symmetries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06-29

AUTHORS

Daniel Green, Zohar Komargodski, Nathan Seiberg, Yuji Tachikawa, Brian Wecht

ABSTRACT

We study the problem of finding exactly marginal deformations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the “conformal manifold,” is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} theories in three dimensions. More... »

PAGES

106

References to SciGraph publications

  • 2010-05-31. Families of conformal fixed points of Chern-Simons-matter theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-06-17. On exactly marginal deformations of 𝒩 = 4 SYM and Type IIB Supergravity on AdS5 × S5 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-04-27. On inherited duality in 𝒩 = 1 d = 4 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-05-28. Infrared stability of Chern-Simons matter theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-08-20. Notes on superconformal Chern-Simons-Matter theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-07-08. Exact Results for Supersymmetric Renormalization and the Supersymmetric Flavor Problem in JOURNAL OF HIGH ENERGY PHYSICS
  • 1990-09. Special geometry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-01-20. Infrared stability of ABJ-like theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-08-04. Conformal manifolds for the conifold and other toric field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1984-03. Representations of conformal supersymmetry in LETTERS IN MATHEMATICAL PHYSICS
  • 2002-09-19. On Conformal Deformations in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep06(2010)106

    DOI

    http://dx.doi.org/10.1007/jhep06(2010)106

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009836669


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Green", 
            "givenName": "Daniel", 
            "id": "sg:person.011144042777.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011144042777.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Komargodski", 
            "givenName": "Zohar", 
            "id": "sg:person.012002530175.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012002530175.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Seiberg", 
            "givenName": "Nathan", 
            "id": "sg:person.013327041724.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327041724.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tachikawa", 
            "givenName": "Yuji", 
            "id": "sg:person.010520672276.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wecht", 
            "givenName": "Brian", 
            "id": "sg:person.01104272502.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272502.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2002/06/039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027235079", 
              "https://doi.org/10.1088/1126-6708/2002/06/039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014713876", 
              "https://doi.org/10.1007/jhep01(2010)080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/08/056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029282443", 
              "https://doi.org/10.1088/1126-6708/2007/08/056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02096559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004599896", 
              "https://doi.org/10.1007/bf02096559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/07/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035503671", 
              "https://doi.org/10.1088/1126-6708/2002/07/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00406399", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049718060", 
              "https://doi.org/10.1007/bf00406399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/04/029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000375545", 
              "https://doi.org/10.1088/1126-6708/2000/04/029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/08/024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008508234", 
              "https://doi.org/10.1088/1126-6708/2005/08/024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/09/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024612482", 
              "https://doi.org/10.1088/1126-6708/2002/09/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2010)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047527739", 
              "https://doi.org/10.1007/jhep05(2010)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2010)108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026186870", 
              "https://doi.org/10.1007/jhep05(2010)108"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-06-29", 
        "datePublishedReg": "2010-06-29", 
        "description": "We study the problem of finding exactly marginal deformations of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = 1 $\\end{document} superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the \u201cconformal manifold,\u201d is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = 1 $\\end{document} theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = 2 $\\end{document} theories in three dimensions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep06(2010)106", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2010"
          }
        ], 
        "keywords": [
          "marginal deformations", 
          "superconformal field theories", 
          "global symmetry group", 
          "field theory", 
          "conformal manifold", 
          "symmetry group", 
          "marginal operators", 
          "group theory", 
          "global symmetry", 
          "chiral operators", 
          "current multiplet", 
          "marginal couplings", 
          "theory", 
          "problem", 
          "operators", 
          "space", 
          "manifold", 
          "Strassler", 
          "dimensions", 
          "previous analyses", 
          "symmetry", 
          "multiplets", 
          "deformation", 
          "coupling", 
          "quotient", 
          "analysis", 
          "only way", 
          "way", 
          "fact", 
          "group", 
          "Leigh", 
          "method"
        ], 
        "name": "Exactly marginal deformations and global symmetries", 
        "pagination": "106", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009836669"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep06(2010)106"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep06(2010)106", 
          "https://app.dimensions.ai/details/publication/pub.1009836669"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep06(2010)106"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2010)106'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2010)106'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2010)106'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep06(2010)106'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      21 PREDICATES      68 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep06(2010)106 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na849bd69554b4f3cbf5972044fea2557
    4 schema:citation sg:pub.10.1007/bf00406399
    5 sg:pub.10.1007/bf02096559
    6 sg:pub.10.1007/jhep01(2010)080
    7 sg:pub.10.1007/jhep05(2010)106
    8 sg:pub.10.1007/jhep05(2010)108
    9 sg:pub.10.1088/1126-6708/2000/04/029
    10 sg:pub.10.1088/1126-6708/2002/06/039
    11 sg:pub.10.1088/1126-6708/2002/07/021
    12 sg:pub.10.1088/1126-6708/2002/09/046
    13 sg:pub.10.1088/1126-6708/2005/08/024
    14 sg:pub.10.1088/1126-6708/2007/08/056
    15 sg:pub.10.1088/1126-6708/2007/12/088
    16 schema:datePublished 2010-06-29
    17 schema:datePublishedReg 2010-06-29
    18 schema:description We study the problem of finding exactly marginal deformations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the “conformal manifold,” is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} theories in three dimensions.
    19 schema:genre article
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N21214dc88d7243fa987c8b51c7cd353f
    22 Nd2b110ed3c0c480a908b297dd02e56a7
    23 sg:journal.1052482
    24 schema:keywords Leigh
    25 Strassler
    26 analysis
    27 chiral operators
    28 conformal manifold
    29 coupling
    30 current multiplet
    31 deformation
    32 dimensions
    33 fact
    34 field theory
    35 global symmetry
    36 global symmetry group
    37 group
    38 group theory
    39 manifold
    40 marginal couplings
    41 marginal deformations
    42 marginal operators
    43 method
    44 multiplets
    45 only way
    46 operators
    47 previous analyses
    48 problem
    49 quotient
    50 space
    51 superconformal field theories
    52 symmetry
    53 symmetry group
    54 theory
    55 way
    56 schema:name Exactly marginal deformations and global symmetries
    57 schema:pagination 106
    58 schema:productId Nf2b9e9dfe21e4d1982dbe0405557e813
    59 Nfe7a65969cb348df92d1771acfc65f95
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009836669
    61 https://doi.org/10.1007/jhep06(2010)106
    62 schema:sdDatePublished 2022-10-01T06:36
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N97c4055bfa8344098dda51d93cf125b8
    65 schema:url https://doi.org/10.1007/jhep06(2010)106
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N21214dc88d7243fa987c8b51c7cd353f schema:issueNumber 6
    70 rdf:type schema:PublicationIssue
    71 N4a8accb853eb47c0ada2814f16ae52c2 rdf:first sg:person.01104272502.47
    72 rdf:rest rdf:nil
    73 N5be8fbb1a20548cbbe2cd901d620881c rdf:first sg:person.012002530175.22
    74 rdf:rest Na2b3a5fb81454fbb89aec2e1eec1b7a7
    75 N97c4055bfa8344098dda51d93cf125b8 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Na2b3a5fb81454fbb89aec2e1eec1b7a7 rdf:first sg:person.013327041724.61
    78 rdf:rest Nf3d2c52772b34c038b9a7b9591c38e0c
    79 Na849bd69554b4f3cbf5972044fea2557 rdf:first sg:person.011144042777.00
    80 rdf:rest N5be8fbb1a20548cbbe2cd901d620881c
    81 Nd2b110ed3c0c480a908b297dd02e56a7 schema:volumeNumber 2010
    82 rdf:type schema:PublicationVolume
    83 Nf2b9e9dfe21e4d1982dbe0405557e813 schema:name dimensions_id
    84 schema:value pub.1009836669
    85 rdf:type schema:PropertyValue
    86 Nf3d2c52772b34c038b9a7b9591c38e0c rdf:first sg:person.010520672276.19
    87 rdf:rest N4a8accb853eb47c0ada2814f16ae52c2
    88 Nfe7a65969cb348df92d1771acfc65f95 schema:name doi
    89 schema:value 10.1007/jhep06(2010)106
    90 rdf:type schema:PropertyValue
    91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Mathematical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Pure Mathematics
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1052482 schema:issn 1029-8479
    98 1126-6708
    99 schema:name Journal of High Energy Physics
    100 schema:publisher Springer Nature
    101 rdf:type schema:Periodical
    102 sg:person.010520672276.19 schema:affiliation grid-institutes:grid.78989.37
    103 schema:familyName Tachikawa
    104 schema:givenName Yuji
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
    106 rdf:type schema:Person
    107 sg:person.01104272502.47 schema:affiliation grid-institutes:grid.78989.37
    108 schema:familyName Wecht
    109 schema:givenName Brian
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104272502.47
    111 rdf:type schema:Person
    112 sg:person.011144042777.00 schema:affiliation grid-institutes:grid.78989.37
    113 schema:familyName Green
    114 schema:givenName Daniel
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011144042777.00
    116 rdf:type schema:Person
    117 sg:person.012002530175.22 schema:affiliation grid-institutes:grid.78989.37
    118 schema:familyName Komargodski
    119 schema:givenName Zohar
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012002530175.22
    121 rdf:type schema:Person
    122 sg:person.013327041724.61 schema:affiliation grid-institutes:grid.78989.37
    123 schema:familyName Seiberg
    124 schema:givenName Nathan
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327041724.61
    126 rdf:type schema:Person
    127 sg:pub.10.1007/bf00406399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049718060
    128 https://doi.org/10.1007/bf00406399
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf02096559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004599896
    131 https://doi.org/10.1007/bf02096559
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/jhep01(2010)080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014713876
    134 https://doi.org/10.1007/jhep01(2010)080
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/jhep05(2010)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047527739
    137 https://doi.org/10.1007/jhep05(2010)106
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep05(2010)108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026186870
    140 https://doi.org/10.1007/jhep05(2010)108
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1088/1126-6708/2000/04/029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000375545
    143 https://doi.org/10.1088/1126-6708/2000/04/029
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1088/1126-6708/2002/06/039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027235079
    146 https://doi.org/10.1088/1126-6708/2002/06/039
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1088/1126-6708/2002/07/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035503671
    149 https://doi.org/10.1088/1126-6708/2002/07/021
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1088/1126-6708/2002/09/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024612482
    152 https://doi.org/10.1088/1126-6708/2002/09/046
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1088/1126-6708/2005/08/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008508234
    155 https://doi.org/10.1088/1126-6708/2005/08/024
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1088/1126-6708/2007/08/056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029282443
    158 https://doi.org/10.1088/1126-6708/2007/08/056
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    161 https://doi.org/10.1088/1126-6708/2007/12/088
    162 rdf:type schema:CreativeWork
    163 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.
    164 schema:name School of Natural Sciences, Institute for Advanced Study, Einstein Drive, 08540, Princeton, NJ, U.S.A.
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...