Factorised 3d N = 4 orthosymplectic quivers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-28

AUTHORS

Mohammad Akhond, Federico Carta, Siddharth Dwivedi, Hirotaka Hayashi, Sung-Soo Kim, Futoshi Yagi

ABSTRACT

We study the moduli space of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories with unitary, orthogonal and symplectic gauge nodes, that fall into exceptional sequences. We find that both the Higgs and Coulomb branches of the moduli space factorise into decoupled sectors. Each decoupled sector is described by a single quiver gauge theory with only unitary gauge nodes. The orthosymplectic quivers serve as magnetic quivers for 5d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal field theories which can be engineered in type IIB string theories both with and without an O5 plane. We use this point of view to postulate the dual pairs of unitary and orthosymplectic quivers by deriving them as magnetic quivers of the 5d theory. We use this correspondence to conjecture exact highest weight generating functions for the Coulomb branch Hilbert series of the orthosymplectic quivers, and provide tests of these results by directly computing the Hilbert series for the orthosymplectic quivers in a series expansion. More... »

PAGES

269

References to SciGraph publications

  • 2020-12-24. Five-brane webs, Higgs branches and unitary/orthosymplectic magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Trifectas for TN in 5d in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-24. 3d mirrors of the circle reduction of twisted A2N theories of class S in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-02-01. Coulomb and Higgs branches from canonical singularities. Part 0 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-11-24. (Symplectic) leaves and (5d Higgs) branches in the Poly(go)nesian Tropical Rain Forest in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-02-18. Product SCFTs in class-S in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-30. Brane webs and magnetic quivers for SQCD in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-25. 5-brane webs, symmetry enhancement, and duality in 5d supersymmetric gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aperçu in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-12-15. Magnetic lattices for orthosymplectic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-18. Complete intersection moduli spaces in gauge theories in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-30. Magnetic quivers for rank 1 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-07-24. Erratum to: Magnetic quivers, Higgs branches and 6d N = (1, 0) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-03-25. (5d RG-flow) trees in the tropical rain forest in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-08. Tropical geometry and five dimensional Higgs branches at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-02-05. S-fold magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02-19. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-16. Brane webs and O5-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-08. Discrete theta angle from an O5-plane in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-11-27. A string theory realization of special unitary quivers in 3 dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Magnetic quivers from brane webs with O5 planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep05(2021)269

    DOI

    http://dx.doi.org/10.1007/jhep05(2021)269

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138438792


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.4827.9", 
              "name": [
                "Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akhond", 
            "givenName": "Mohammad", 
            "id": "sg:person.07616772705.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616772705.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carta", 
            "givenName": "Federico", 
            "id": "sg:person.010130766563.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130766563.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China", 
              "id": "http://www.grid.ac/institutes/grid.13291.38", 
              "name": [
                "Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dwivedi", 
            "givenName": "Siddharth", 
            "id": "sg:person.012263474100.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263474100.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265061.6", 
              "name": [
                "Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayashi", 
            "givenName": "Hirotaka", 
            "id": "sg:person.012413203443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China", 
              "id": "http://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Sung-Soo", 
            "id": "sg:person.016630657771.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630657771.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China", 
              "id": "http://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagi", 
            "givenName": "Futoshi", 
            "id": "sg:person.012106514747.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep03(2014)112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038757919", 
              "https://doi.org/10.1007/jhep03(2014)112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129714598", 
              "https://doi.org/10.1007/jhep07(2020)199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134131855", 
              "https://doi.org/10.1007/jhep12(2020)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133541670", 
              "https://doi.org/10.1007/jhep12(2020)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135077888", 
              "https://doi.org/10.1007/jhep02(2021)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111314197", 
              "https://doi.org/10.1007/jhep01(2019)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043468416", 
              "https://doi.org/10.1007/jhep01(2012)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135470090", 
              "https://doi.org/10.1007/jhep02(2021)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092594430", 
              "https://doi.org/10.1007/jhep11(2017)041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2021)241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136694726", 
              "https://doi.org/10.1007/jhep03(2021)241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/01/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026223761", 
              "https://doi.org/10.1088/1126-6708/1998/01/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2020)124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132897063", 
              "https://doi.org/10.1007/jhep11(2020)124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040546683", 
              "https://doi.org/10.1007/jhep02(2013)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135167235", 
              "https://doi.org/10.1007/jhep02(2021)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2019)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119905953", 
              "https://doi.org/10.1007/jhep07(2019)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131195201", 
              "https://doi.org/10.1007/jhep09(2020)161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129747792", 
              "https://doi.org/10.1007/jhep07(2020)204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2020)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132958970", 
              "https://doi.org/10.1007/jhep11(2020)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131333828", 
              "https://doi.org/10.1007/jhep09(2020)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014613199", 
              "https://doi.org/10.1007/jhep03(2016)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126020752", 
              "https://doi.org/10.1007/jhep03(2020)176"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-28", 
        "datePublishedReg": "2021-05-28", 
        "description": "We study the moduli space of 3d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 quiver gauge theories with unitary, orthogonal and symplectic gauge nodes, that fall into exceptional sequences. We find that both the Higgs and Coulomb branches of the moduli space factorise into decoupled sectors. Each decoupled sector is described by a single quiver gauge theory with only unitary gauge nodes. The orthosymplectic quivers serve as magnetic quivers for 5d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 superconformal field theories which can be engineered in type IIB string theories both with and without an O5 plane. We use this point of view to postulate the dual pairs of unitary and orthosymplectic quivers by deriving them as magnetic quivers of the 5d theory. We use this correspondence to conjecture exact highest weight generating functions for the Coulomb branch Hilbert series of the orthosymplectic quivers, and provide tests of these results by directly computing the Hilbert series for the orthosymplectic quivers in a series expansion.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep05(2021)269", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "magnetic quivers", 
          "Hilbert series", 
          "type IIB string theory", 
          "Coulomb branch Hilbert series", 
          "superconformal field theories", 
          "IIB string theory", 
          "quiver gauge theories", 
          "gauge nodes", 
          "field theory", 
          "string theory", 
          "moduli space", 
          "Coulomb branch", 
          "gauge theory", 
          "dual pair", 
          "quivers", 
          "series expansion", 
          "O5-plane", 
          "exceptional sequences", 
          "theory", 
          "point of view", 
          "space", 
          "higher weight", 
          "nodes", 
          "correspondence", 
          "plane", 
          "point", 
          "expansion", 
          "function", 
          "Higgs", 
          "branches", 
          "pairs", 
          "series", 
          "results", 
          "sequence", 
          "view", 
          "sector", 
          "weight", 
          "test", 
          "symplectic gauge nodes", 
          "moduli space factorise", 
          "space factorise", 
          "factorise", 
          "single quiver gauge theory", 
          "only unitary gauge nodes", 
          "unitary gauge nodes", 
          "orthosymplectic quivers", 
          "branch Hilbert series"
        ], 
        "name": "Factorised 3d N = 4 orthosymplectic quivers", 
        "pagination": "269", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138438792"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep05(2021)269"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep05(2021)269", 
          "https://app.dimensions.ai/details/publication/pub.1138438792"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep05(2021)269"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'


     

    This table displays all metadata directly associated to this object as RDF triples.

    279 TRIPLES      22 PREDICATES      103 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep05(2021)269 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N330c33c381be40afb4ccb689ca67a0e2
    4 schema:citation sg:pub.10.1007/jhep01(2012)079
    5 sg:pub.10.1007/jhep01(2014)005
    6 sg:pub.10.1007/jhep01(2019)068
    7 sg:pub.10.1007/jhep02(2013)110
    8 sg:pub.10.1007/jhep02(2021)003
    9 sg:pub.10.1007/jhep02(2021)054
    10 sg:pub.10.1007/jhep02(2021)164
    11 sg:pub.10.1007/jhep03(2014)112
    12 sg:pub.10.1007/jhep03(2016)109
    13 sg:pub.10.1007/jhep03(2020)176
    14 sg:pub.10.1007/jhep03(2021)241
    15 sg:pub.10.1007/jhep06(2016)130
    16 sg:pub.10.1007/jhep07(2018)061
    17 sg:pub.10.1007/jhep07(2019)137
    18 sg:pub.10.1007/jhep07(2020)199
    19 sg:pub.10.1007/jhep07(2020)204
    20 sg:pub.10.1007/jhep09(2010)063
    21 sg:pub.10.1007/jhep09(2020)161
    22 sg:pub.10.1007/jhep09(2020)189
    23 sg:pub.10.1007/jhep10(2014)152
    24 sg:pub.10.1007/jhep11(2017)041
    25 sg:pub.10.1007/jhep11(2020)124
    26 sg:pub.10.1007/jhep11(2020)157
    27 sg:pub.10.1007/jhep12(2020)092
    28 sg:pub.10.1007/jhep12(2020)164
    29 sg:pub.10.1088/1126-6708/1998/01/002
    30 sg:pub.10.1088/1126-6708/2000/11/033
    31 sg:pub.10.1088/1126-6708/2007/03/090
    32 sg:pub.10.1088/1126-6708/2007/11/050
    33 sg:pub.10.1088/1126-6708/2008/05/099
    34 sg:pub.10.1088/1126-6708/2009/09/052
    35 schema:datePublished 2021-05-28
    36 schema:datePublishedReg 2021-05-28
    37 schema:description We study the moduli space of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories with unitary, orthogonal and symplectic gauge nodes, that fall into exceptional sequences. We find that both the Higgs and Coulomb branches of the moduli space factorise into decoupled sectors. Each decoupled sector is described by a single quiver gauge theory with only unitary gauge nodes. The orthosymplectic quivers serve as magnetic quivers for 5d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal field theories which can be engineered in type IIB string theories both with and without an O5 plane. We use this point of view to postulate the dual pairs of unitary and orthosymplectic quivers by deriving them as magnetic quivers of the 5d theory. We use this correspondence to conjecture exact highest weight generating functions for the Coulomb branch Hilbert series of the orthosymplectic quivers, and provide tests of these results by directly computing the Hilbert series for the orthosymplectic quivers in a series expansion.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N21929cbaabf248bbba338452feb6c34e
    42 N50a809f1779d4ce5b1a5d6634d196318
    43 sg:journal.1052482
    44 schema:keywords Coulomb branch
    45 Coulomb branch Hilbert series
    46 Higgs
    47 Hilbert series
    48 IIB string theory
    49 O5-plane
    50 branch Hilbert series
    51 branches
    52 correspondence
    53 dual pair
    54 exceptional sequences
    55 expansion
    56 factorise
    57 field theory
    58 function
    59 gauge nodes
    60 gauge theory
    61 higher weight
    62 magnetic quivers
    63 moduli space
    64 moduli space factorise
    65 nodes
    66 only unitary gauge nodes
    67 orthosymplectic quivers
    68 pairs
    69 plane
    70 point
    71 point of view
    72 quiver gauge theories
    73 quivers
    74 results
    75 sector
    76 sequence
    77 series
    78 series expansion
    79 single quiver gauge theory
    80 space
    81 space factorise
    82 string theory
    83 superconformal field theories
    84 symplectic gauge nodes
    85 test
    86 theory
    87 type IIB string theory
    88 unitary gauge nodes
    89 view
    90 weight
    91 schema:name Factorised 3d N = 4 orthosymplectic quivers
    92 schema:pagination 269
    93 schema:productId N5f8d79ee939a4cd9a6d5588c1cb3495e
    94 Nf579b22251544038bebd2062f4046ab7
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138438792
    96 https://doi.org/10.1007/jhep05(2021)269
    97 schema:sdDatePublished 2022-01-01T18:59
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N6bd424e445fb435e8423806470a2fa89
    100 schema:url https://doi.org/10.1007/jhep05(2021)269
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N1ec02f1a6f26459a8c6ccf9ad2ef5046 rdf:first sg:person.012413203443.40
    105 rdf:rest N727afeafd3674990bff07839b7c6d26e
    106 N21929cbaabf248bbba338452feb6c34e schema:issueNumber 5
    107 rdf:type schema:PublicationIssue
    108 N330c33c381be40afb4ccb689ca67a0e2 rdf:first sg:person.07616772705.45
    109 rdf:rest N6e93b453839e4dafba8214ab45882aee
    110 N50a809f1779d4ce5b1a5d6634d196318 schema:volumeNumber 2021
    111 rdf:type schema:PublicationVolume
    112 N51bacd36f8ca45da867d94c2ec995cb8 rdf:first sg:person.012106514747.79
    113 rdf:rest rdf:nil
    114 N59e198188e314c3abab969b75c67f9b6 rdf:first sg:person.012263474100.20
    115 rdf:rest N1ec02f1a6f26459a8c6ccf9ad2ef5046
    116 N5f8d79ee939a4cd9a6d5588c1cb3495e schema:name dimensions_id
    117 schema:value pub.1138438792
    118 rdf:type schema:PropertyValue
    119 N6bd424e445fb435e8423806470a2fa89 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 N6e93b453839e4dafba8214ab45882aee rdf:first sg:person.010130766563.50
    122 rdf:rest N59e198188e314c3abab969b75c67f9b6
    123 N727afeafd3674990bff07839b7c6d26e rdf:first sg:person.016630657771.78
    124 rdf:rest N51bacd36f8ca45da867d94c2ec995cb8
    125 Nf579b22251544038bebd2062f4046ab7 schema:name doi
    126 schema:value 10.1007/jhep05(2021)269
    127 rdf:type schema:PropertyValue
    128 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Mathematical Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Pure Mathematics
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1052482 schema:issn 1029-8479
    135 1126-6708
    136 schema:name Journal of High Energy Physics
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.010130766563.50 schema:affiliation grid-institutes:grid.8250.f
    140 schema:familyName Carta
    141 schema:givenName Federico
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130766563.50
    143 rdf:type schema:Person
    144 sg:person.012106514747.79 schema:affiliation grid-institutes:grid.263901.f
    145 schema:familyName Yagi
    146 schema:givenName Futoshi
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79
    148 rdf:type schema:Person
    149 sg:person.012263474100.20 schema:affiliation grid-institutes:grid.13291.38
    150 schema:familyName Dwivedi
    151 schema:givenName Siddharth
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263474100.20
    153 rdf:type schema:Person
    154 sg:person.012413203443.40 schema:affiliation grid-institutes:grid.265061.6
    155 schema:familyName Hayashi
    156 schema:givenName Hirotaka
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40
    158 rdf:type schema:Person
    159 sg:person.016630657771.78 schema:affiliation grid-institutes:grid.54549.39
    160 schema:familyName Kim
    161 schema:givenName Sung-Soo
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630657771.78
    163 rdf:type schema:Person
    164 sg:person.07616772705.45 schema:affiliation grid-institutes:grid.4827.9
    165 schema:familyName Akhond
    166 schema:givenName Mohammad
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616772705.45
    168 rdf:type schema:Person
    169 sg:pub.10.1007/jhep01(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
    170 https://doi.org/10.1007/jhep01(2012)079
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    173 https://doi.org/10.1007/jhep01(2014)005
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep01(2019)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314197
    176 https://doi.org/10.1007/jhep01(2019)068
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
    179 https://doi.org/10.1007/jhep02(2013)110
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep02(2021)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135077888
    182 https://doi.org/10.1007/jhep02(2021)003
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep02(2021)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135167235
    185 https://doi.org/10.1007/jhep02(2021)054
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep02(2021)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135470090
    188 https://doi.org/10.1007/jhep02(2021)164
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep03(2014)112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038757919
    191 https://doi.org/10.1007/jhep03(2014)112
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep03(2016)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014613199
    194 https://doi.org/10.1007/jhep03(2016)109
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep03(2020)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126020752
    197 https://doi.org/10.1007/jhep03(2020)176
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep03(2021)241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136694726
    200 https://doi.org/10.1007/jhep03(2021)241
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    203 https://doi.org/10.1007/jhep06(2016)130
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    206 https://doi.org/10.1007/jhep07(2018)061
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep07(2019)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119905953
    209 https://doi.org/10.1007/jhep07(2019)137
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep07(2020)199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129714598
    212 https://doi.org/10.1007/jhep07(2020)199
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep07(2020)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129747792
    215 https://doi.org/10.1007/jhep07(2020)204
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    218 https://doi.org/10.1007/jhep09(2010)063
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep09(2020)161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131195201
    221 https://doi.org/10.1007/jhep09(2020)161
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep09(2020)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131333828
    224 https://doi.org/10.1007/jhep09(2020)189
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    227 https://doi.org/10.1007/jhep10(2014)152
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep11(2017)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092594430
    230 https://doi.org/10.1007/jhep11(2017)041
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep11(2020)124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132897063
    233 https://doi.org/10.1007/jhep11(2020)124
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/jhep11(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132958970
    236 https://doi.org/10.1007/jhep11(2020)157
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/jhep12(2020)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133541670
    239 https://doi.org/10.1007/jhep12(2020)092
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/jhep12(2020)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134131855
    242 https://doi.org/10.1007/jhep12(2020)164
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
    245 https://doi.org/10.1088/1126-6708/1998/01/002
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    248 https://doi.org/10.1088/1126-6708/2000/11/033
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    251 https://doi.org/10.1088/1126-6708/2007/03/090
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    254 https://doi.org/10.1088/1126-6708/2007/11/050
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    257 https://doi.org/10.1088/1126-6708/2008/05/099
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    260 https://doi.org/10.1088/1126-6708/2009/09/052
    261 rdf:type schema:CreativeWork
    262 grid-institutes:grid.13291.38 schema:alternateName Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China
    263 schema:name Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China
    264 rdf:type schema:Organization
    265 grid-institutes:grid.263901.f schema:alternateName School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China
    266 schema:name School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China
    267 rdf:type schema:Organization
    268 grid-institutes:grid.265061.6 schema:alternateName Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan
    269 schema:name Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan
    270 rdf:type schema:Organization
    271 grid-institutes:grid.4827.9 schema:alternateName Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K.
    272 schema:name Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K.
    273 rdf:type schema:Organization
    274 grid-institutes:grid.54549.39 schema:alternateName School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China
    275 schema:name School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China
    276 rdf:type schema:Organization
    277 grid-institutes:grid.8250.f schema:alternateName Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom
    278 schema:name Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom
    279 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...