Factorised 3d N = 4 orthosymplectic quivers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-28

AUTHORS

Mohammad Akhond, Federico Carta, Siddharth Dwivedi, Hirotaka Hayashi, Sung-Soo Kim, Futoshi Yagi

ABSTRACT

We study the moduli space of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories with unitary, orthogonal and symplectic gauge nodes, that fall into exceptional sequences. We find that both the Higgs and Coulomb branches of the moduli space factorise into decoupled sectors. Each decoupled sector is described by a single quiver gauge theory with only unitary gauge nodes. The orthosymplectic quivers serve as magnetic quivers for 5d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal field theories which can be engineered in type IIB string theories both with and without an O5 plane. We use this point of view to postulate the dual pairs of unitary and orthosymplectic quivers by deriving them as magnetic quivers of the 5d theory. We use this correspondence to conjecture exact highest weight generating functions for the Coulomb branch Hilbert series of the orthosymplectic quivers, and provide tests of these results by directly computing the Hilbert series for the orthosymplectic quivers in a series expansion. More... »

PAGES

269

References to SciGraph publications

  • 2020-12-24. Five-brane webs, Higgs branches and unitary/orthosymplectic magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Trifectas for TN in 5d in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-24. 3d mirrors of the circle reduction of twisted A2N theories of class S in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-02-01. Coulomb and Higgs branches from canonical singularities. Part 0 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-11-24. (Symplectic) leaves and (5d Higgs) branches in the Poly(go)nesian Tropical Rain Forest in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-02-18. Product SCFTs in class-S in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aperçu in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-25. 5-brane webs, symmetry enhancement, and duality in 5d supersymmetric gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-12-15. Magnetic lattices for orthosymplectic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-18. Complete intersection moduli spaces in gauge theories in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-30. Magnetic quivers for rank 1 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-07-24. Erratum to: Magnetic quivers, Higgs branches and 6d N = (1, 0) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-03-25. (5d RG-flow) trees in the tropical rain forest in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-30. Brane webs and magnetic quivers for SQCD in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-08. Tropical geometry and five dimensional Higgs branches at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-02-05. S-fold magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02-19. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-16. Brane webs and O5-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-08. Discrete theta angle from an O5-plane in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-11-27. A string theory realization of special unitary quivers in 3 dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Magnetic quivers from brane webs with O5 planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep05(2021)269

    DOI

    http://dx.doi.org/10.1007/jhep05(2021)269

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1138438792


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.4827.9", 
              "name": [
                "Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akhond", 
            "givenName": "Mohammad", 
            "id": "sg:person.07616772705.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616772705.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.8250.f", 
              "name": [
                "Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carta", 
            "givenName": "Federico", 
            "id": "sg:person.010130766563.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130766563.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China", 
              "id": "http://www.grid.ac/institutes/grid.13291.38", 
              "name": [
                "Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dwivedi", 
            "givenName": "Siddharth", 
            "id": "sg:person.012263474100.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263474100.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265061.6", 
              "name": [
                "Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayashi", 
            "givenName": "Hirotaka", 
            "id": "sg:person.012413203443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China", 
              "id": "http://www.grid.ac/institutes/grid.54549.39", 
              "name": [
                "School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Sung-Soo", 
            "id": "sg:person.016630657771.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630657771.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China", 
              "id": "http://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagi", 
            "givenName": "Futoshi", 
            "id": "sg:person.012106514747.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2020)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132958970", 
              "https://doi.org/10.1007/jhep11(2020)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038757919", 
              "https://doi.org/10.1007/jhep03(2014)112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014613199", 
              "https://doi.org/10.1007/jhep03(2016)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2021)241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136694726", 
              "https://doi.org/10.1007/jhep03(2021)241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134131855", 
              "https://doi.org/10.1007/jhep12(2020)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111314197", 
              "https://doi.org/10.1007/jhep01(2019)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2020)124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132897063", 
              "https://doi.org/10.1007/jhep11(2020)124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135077888", 
              "https://doi.org/10.1007/jhep02(2021)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129747792", 
              "https://doi.org/10.1007/jhep07(2020)204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135470090", 
              "https://doi.org/10.1007/jhep02(2021)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092594430", 
              "https://doi.org/10.1007/jhep11(2017)041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133541670", 
              "https://doi.org/10.1007/jhep12(2020)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040546683", 
              "https://doi.org/10.1007/jhep02(2013)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2019)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119905953", 
              "https://doi.org/10.1007/jhep07(2019)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043468416", 
              "https://doi.org/10.1007/jhep01(2012)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131195201", 
              "https://doi.org/10.1007/jhep09(2020)161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126020752", 
              "https://doi.org/10.1007/jhep03(2020)176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/01/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026223761", 
              "https://doi.org/10.1088/1126-6708/1998/01/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2021)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135167235", 
              "https://doi.org/10.1007/jhep02(2021)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131333828", 
              "https://doi.org/10.1007/jhep09(2020)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129714598", 
              "https://doi.org/10.1007/jhep07(2020)199"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-28", 
        "datePublishedReg": "2021-05-28", 
        "description": "We study the moduli space of 3d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 quiver gauge theories with unitary, orthogonal and symplectic gauge nodes, that fall into exceptional sequences. We find that both the Higgs and Coulomb branches of the moduli space factorise into decoupled sectors. Each decoupled sector is described by a single quiver gauge theory with only unitary gauge nodes. The orthosymplectic quivers serve as magnetic quivers for 5d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1 superconformal field theories which can be engineered in type IIB string theories both with and without an O5 plane. We use this point of view to postulate the dual pairs of unitary and orthosymplectic quivers by deriving them as magnetic quivers of the 5d theory. We use this correspondence to conjecture exact highest weight generating functions for the Coulomb branch Hilbert series of the orthosymplectic quivers, and provide tests of these results by directly computing the Hilbert series for the orthosymplectic quivers in a series expansion.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep05(2021)269", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "magnetic quivers", 
          "Hilbert series", 
          "type IIB string theory", 
          "Coulomb branch Hilbert series", 
          "superconformal field theories", 
          "IIB string theory", 
          "quiver gauge theories", 
          "gauge nodes", 
          "field theory", 
          "string theory", 
          "moduli space", 
          "Coulomb branch", 
          "gauge theory", 
          "dual pair", 
          "quivers", 
          "series expansion", 
          "O5-plane", 
          "exceptional sequences", 
          "theory", 
          "point of view", 
          "space", 
          "higher weight", 
          "nodes", 
          "correspondence", 
          "plane", 
          "point", 
          "expansion", 
          "function", 
          "Higgs", 
          "branches", 
          "pairs", 
          "series", 
          "results", 
          "sequence", 
          "view", 
          "sector", 
          "weight", 
          "test"
        ], 
        "name": "Factorised 3d N = 4 orthosymplectic quivers", 
        "pagination": "269", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1138438792"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep05(2021)269"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep05(2021)269", 
          "https://app.dimensions.ai/details/publication/pub.1138438792"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_912.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep05(2021)269"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)269'


     

    This table displays all metadata directly associated to this object as RDF triples.

    270 TRIPLES      22 PREDICATES      94 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep05(2021)269 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nac6d35920b1944cc9698cffc2c1395ec
    4 schema:citation sg:pub.10.1007/jhep01(2012)079
    5 sg:pub.10.1007/jhep01(2014)005
    6 sg:pub.10.1007/jhep01(2019)068
    7 sg:pub.10.1007/jhep02(2013)110
    8 sg:pub.10.1007/jhep02(2021)003
    9 sg:pub.10.1007/jhep02(2021)054
    10 sg:pub.10.1007/jhep02(2021)164
    11 sg:pub.10.1007/jhep03(2014)112
    12 sg:pub.10.1007/jhep03(2016)109
    13 sg:pub.10.1007/jhep03(2020)176
    14 sg:pub.10.1007/jhep03(2021)241
    15 sg:pub.10.1007/jhep06(2016)130
    16 sg:pub.10.1007/jhep07(2018)061
    17 sg:pub.10.1007/jhep07(2019)137
    18 sg:pub.10.1007/jhep07(2020)199
    19 sg:pub.10.1007/jhep07(2020)204
    20 sg:pub.10.1007/jhep09(2010)063
    21 sg:pub.10.1007/jhep09(2020)161
    22 sg:pub.10.1007/jhep09(2020)189
    23 sg:pub.10.1007/jhep10(2014)152
    24 sg:pub.10.1007/jhep11(2017)041
    25 sg:pub.10.1007/jhep11(2020)124
    26 sg:pub.10.1007/jhep11(2020)157
    27 sg:pub.10.1007/jhep12(2020)092
    28 sg:pub.10.1007/jhep12(2020)164
    29 sg:pub.10.1088/1126-6708/1998/01/002
    30 sg:pub.10.1088/1126-6708/2000/11/033
    31 sg:pub.10.1088/1126-6708/2007/03/090
    32 sg:pub.10.1088/1126-6708/2007/11/050
    33 sg:pub.10.1088/1126-6708/2008/05/099
    34 sg:pub.10.1088/1126-6708/2009/09/052
    35 schema:datePublished 2021-05-28
    36 schema:datePublishedReg 2021-05-28
    37 schema:description We study the moduli space of 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 quiver gauge theories with unitary, orthogonal and symplectic gauge nodes, that fall into exceptional sequences. We find that both the Higgs and Coulomb branches of the moduli space factorise into decoupled sectors. Each decoupled sector is described by a single quiver gauge theory with only unitary gauge nodes. The orthosymplectic quivers serve as magnetic quivers for 5d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal field theories which can be engineered in type IIB string theories both with and without an O5 plane. We use this point of view to postulate the dual pairs of unitary and orthosymplectic quivers by deriving them as magnetic quivers of the 5d theory. We use this correspondence to conjecture exact highest weight generating functions for the Coulomb branch Hilbert series of the orthosymplectic quivers, and provide tests of these results by directly computing the Hilbert series for the orthosymplectic quivers in a series expansion.
    38 schema:genre article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf N91f43c06a27243eb9f2e72596191140c
    42 Nf2760e342d224588bc09c70a51670226
    43 sg:journal.1052482
    44 schema:keywords Coulomb branch
    45 Coulomb branch Hilbert series
    46 Higgs
    47 Hilbert series
    48 IIB string theory
    49 O5-plane
    50 branches
    51 correspondence
    52 dual pair
    53 exceptional sequences
    54 expansion
    55 field theory
    56 function
    57 gauge nodes
    58 gauge theory
    59 higher weight
    60 magnetic quivers
    61 moduli space
    62 nodes
    63 pairs
    64 plane
    65 point
    66 point of view
    67 quiver gauge theories
    68 quivers
    69 results
    70 sector
    71 sequence
    72 series
    73 series expansion
    74 space
    75 string theory
    76 superconformal field theories
    77 test
    78 theory
    79 type IIB string theory
    80 view
    81 weight
    82 schema:name Factorised 3d N = 4 orthosymplectic quivers
    83 schema:pagination 269
    84 schema:productId N51b9528a32cd48f8b4a19104a87f6aef
    85 Ne4d1e48111784045933e0b0fdb269412
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138438792
    87 https://doi.org/10.1007/jhep05(2021)269
    88 schema:sdDatePublished 2022-05-20T07:39
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N139336be5f1e41cbb2bdb6848f01a743
    91 schema:url https://doi.org/10.1007/jhep05(2021)269
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N139336be5f1e41cbb2bdb6848f01a743 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 N31d0ceb454104fbf96e0f5ce19717722 rdf:first sg:person.012263474100.20
    98 rdf:rest Na7d2113a6dea49a18c0dc50168205424
    99 N51b9528a32cd48f8b4a19104a87f6aef schema:name dimensions_id
    100 schema:value pub.1138438792
    101 rdf:type schema:PropertyValue
    102 N82663ba9ff54483dbe7d1b6feeb73bef rdf:first sg:person.010130766563.50
    103 rdf:rest N31d0ceb454104fbf96e0f5ce19717722
    104 N91f43c06a27243eb9f2e72596191140c schema:issueNumber 5
    105 rdf:type schema:PublicationIssue
    106 N9703ada36ae747bf96209094c49827f8 rdf:first sg:person.012106514747.79
    107 rdf:rest rdf:nil
    108 Na7d2113a6dea49a18c0dc50168205424 rdf:first sg:person.012413203443.40
    109 rdf:rest Nebdaf87b31cb4322a8eb44a98334d17b
    110 Nac6d35920b1944cc9698cffc2c1395ec rdf:first sg:person.07616772705.45
    111 rdf:rest N82663ba9ff54483dbe7d1b6feeb73bef
    112 Ne4d1e48111784045933e0b0fdb269412 schema:name doi
    113 schema:value 10.1007/jhep05(2021)269
    114 rdf:type schema:PropertyValue
    115 Nebdaf87b31cb4322a8eb44a98334d17b rdf:first sg:person.016630657771.78
    116 rdf:rest N9703ada36ae747bf96209094c49827f8
    117 Nf2760e342d224588bc09c70a51670226 schema:volumeNumber 2021
    118 rdf:type schema:PublicationVolume
    119 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Mathematical Sciences
    121 rdf:type schema:DefinedTerm
    122 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Pure Mathematics
    124 rdf:type schema:DefinedTerm
    125 sg:journal.1052482 schema:issn 1029-8479
    126 1126-6708
    127 schema:name Journal of High Energy Physics
    128 schema:publisher Springer Nature
    129 rdf:type schema:Periodical
    130 sg:person.010130766563.50 schema:affiliation grid-institutes:grid.8250.f
    131 schema:familyName Carta
    132 schema:givenName Federico
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130766563.50
    134 rdf:type schema:Person
    135 sg:person.012106514747.79 schema:affiliation grid-institutes:grid.263901.f
    136 schema:familyName Yagi
    137 schema:givenName Futoshi
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79
    139 rdf:type schema:Person
    140 sg:person.012263474100.20 schema:affiliation grid-institutes:grid.13291.38
    141 schema:familyName Dwivedi
    142 schema:givenName Siddharth
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012263474100.20
    144 rdf:type schema:Person
    145 sg:person.012413203443.40 schema:affiliation grid-institutes:grid.265061.6
    146 schema:familyName Hayashi
    147 schema:givenName Hirotaka
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40
    149 rdf:type schema:Person
    150 sg:person.016630657771.78 schema:affiliation grid-institutes:grid.54549.39
    151 schema:familyName Kim
    152 schema:givenName Sung-Soo
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016630657771.78
    154 rdf:type schema:Person
    155 sg:person.07616772705.45 schema:affiliation grid-institutes:grid.4827.9
    156 schema:familyName Akhond
    157 schema:givenName Mohammad
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616772705.45
    159 rdf:type schema:Person
    160 sg:pub.10.1007/jhep01(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
    161 https://doi.org/10.1007/jhep01(2012)079
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    164 https://doi.org/10.1007/jhep01(2014)005
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep01(2019)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314197
    167 https://doi.org/10.1007/jhep01(2019)068
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
    170 https://doi.org/10.1007/jhep02(2013)110
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep02(2021)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135077888
    173 https://doi.org/10.1007/jhep02(2021)003
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep02(2021)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135167235
    176 https://doi.org/10.1007/jhep02(2021)054
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep02(2021)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135470090
    179 https://doi.org/10.1007/jhep02(2021)164
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep03(2014)112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038757919
    182 https://doi.org/10.1007/jhep03(2014)112
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep03(2016)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014613199
    185 https://doi.org/10.1007/jhep03(2016)109
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep03(2020)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126020752
    188 https://doi.org/10.1007/jhep03(2020)176
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep03(2021)241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136694726
    191 https://doi.org/10.1007/jhep03(2021)241
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    194 https://doi.org/10.1007/jhep06(2016)130
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    197 https://doi.org/10.1007/jhep07(2018)061
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep07(2019)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119905953
    200 https://doi.org/10.1007/jhep07(2019)137
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep07(2020)199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129714598
    203 https://doi.org/10.1007/jhep07(2020)199
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep07(2020)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129747792
    206 https://doi.org/10.1007/jhep07(2020)204
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    209 https://doi.org/10.1007/jhep09(2010)063
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep09(2020)161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131195201
    212 https://doi.org/10.1007/jhep09(2020)161
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep09(2020)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131333828
    215 https://doi.org/10.1007/jhep09(2020)189
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    218 https://doi.org/10.1007/jhep10(2014)152
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep11(2017)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092594430
    221 https://doi.org/10.1007/jhep11(2017)041
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep11(2020)124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132897063
    224 https://doi.org/10.1007/jhep11(2020)124
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep11(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132958970
    227 https://doi.org/10.1007/jhep11(2020)157
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep12(2020)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133541670
    230 https://doi.org/10.1007/jhep12(2020)092
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep12(2020)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134131855
    233 https://doi.org/10.1007/jhep12(2020)164
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
    236 https://doi.org/10.1088/1126-6708/1998/01/002
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    239 https://doi.org/10.1088/1126-6708/2000/11/033
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    242 https://doi.org/10.1088/1126-6708/2007/03/090
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    245 https://doi.org/10.1088/1126-6708/2007/11/050
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    248 https://doi.org/10.1088/1126-6708/2008/05/099
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    251 https://doi.org/10.1088/1126-6708/2009/09/052
    252 rdf:type schema:CreativeWork
    253 grid-institutes:grid.13291.38 schema:alternateName Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China
    254 schema:name Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, 610064, Chengdu, China
    255 rdf:type schema:Organization
    256 grid-institutes:grid.263901.f schema:alternateName School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China
    257 schema:name School of Mathematics, Southwest Jiaotong University, West zone, High-tech district, 611756, Chengdu, Sichuan, China
    258 rdf:type schema:Organization
    259 grid-institutes:grid.265061.6 schema:alternateName Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan
    260 schema:name Department of Physics, School of Science, Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka-shi, Kanagawa, Japan
    261 rdf:type schema:Organization
    262 grid-institutes:grid.4827.9 schema:alternateName Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K.
    263 schema:name Department of Physics, Swansea University, Singleton Park, SA2 8PP, Swansea, U.K.
    264 rdf:type schema:Organization
    265 grid-institutes:grid.54549.39 schema:alternateName School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China
    266 schema:name School of Physics, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, China
    267 rdf:type schema:Organization
    268 grid-institutes:grid.8250.f schema:alternateName Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom
    269 schema:name Department of Mathematical Sciences, Durham University, DH1 3LE, Durham, United Kingdom
    270 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...