Superconformal index of low-rank gauge theories via the Bethe Ansatz View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-05-10

AUTHORS

Francesco Benini, Giovanni Rizi

ABSTRACT

We study the Bethe Ansatz formula for the superconformal index, in the case of 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills with gauge group SU(N). We observe that not all solutions to the Bethe Ansatz Equations (BAEs) contribute to the index, and thus formulate “reduced BAEs” such that all and only their solutions contribute. We then propose, sharpening a conjecture of Arabi Ardehali et al. [1], that there is a one-to-one correspondence between branches of solutions to the reduced BAEs and vacua of the 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1* theory. We test the proposal in the case of SU(2) and SU(3). In the case of SU(3), we confirm that there is a continuous family of solutions, whose contribution to the index is non-vanishing. More... »

PAGES

61

References to SciGraph publications

  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2021-01-04. Sub-leading structures in superconformal indices: subdominant saddles and logarithmic contributions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-26. Reading between the lines of four-dimensional gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-11-20. Topologically twisted indices in five dimensions and holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-07-07. The arithmetic of supersymmetric vacua in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-04. Supersymmetric AdS6 black holes from F(4) gauged supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-07-26. An Elliptic Superpotential for Softly Broken 𝒩 = 4 Supersymmetric Yang-Mills Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-08-21. N = 1 supersymmetric indices and the four-dimensional A-model in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-11-08. 5d partition functions with a twist in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-27. Precision microstate counting for the entropy of wrapped M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-04. The Cardy limit of the topologically twisted index and black strings in AdS5 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-05-22. Black hole microstate counting in Type IIB from 5d SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-04-21. Residues, modularity, and the Cardy limit of the 4d N = 4 superconformal index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-09. Large N matrix models for 3d N = 2 theories: twisted index, free energy and black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-01-07. AdS7 black-hole entropy and 5D N = 2 Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-04-15. Black hole entropy function for toric theories via Bethe Ansatz in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-26. Holographic microstate counting for AdS4 black holes in massive IIA supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-13. Asymptotic growth of the 4d N = 4 index and partially deconfined phases in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-05-10. Black hole microstates in AdS4 from supersymmetric localization in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-29. Supersymmetric phases of 4d N = 4 SYM at large N in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-12-06. Universal spinning black holes and theories of class R in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-01-07. A 4d N = 1 Cardy Formula in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-10. Rotating black hole entropy from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-08. A universal counting of black hole microstates in AdS4 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-01-18. On the N=1∗ gauge theory on a circle and elliptic integrable systems in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-02-15. Supersymmetric AdS6 black holes from matter coupled F(4) gauged supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-08-08. Microstate counting of AdS4 hyperbolic black hole entropy via the topologically twisted index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-10-07. Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5 black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-11-27. The large-N limit of the 4d N = 1 superconformal index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-03. The topologically twisted index of N = 4 super-Yang-Mills on T2 × S2 and the elliptic genus in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-16. Microstate counting via Bethe Ansätze in the 4d N = 1 superconformal index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-01-13. A Bethe Ansatz Type Formula for the Superconformal Index in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2018-12-03. 6D attractors and black hole microstates in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-03-13. Microscopic entropy of rotating electrically charged AdS4 black holes from field theory localization in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-06-27. Cardy-like asymptotics of the 4d N=4 index and AdS5 blackholes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-08-22. The asymptotic growth of states of the 4d N=1 superconformal index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-21. Counting the massive vacua of N=1∗ super Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep05(2021)061

    DOI

    http://dx.doi.org/10.1007/jhep05(2021)061

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1137937239


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "ICTP, Strada Costiera 11, 34151, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419330.c", 
              "name": [
                "SISSA, Via Bonomea 265, 34136, Trieste, Italy", 
                "INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy", 
                "ICTP, Strada Costiera 11, 34151, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benini", 
            "givenName": "Francesco", 
            "id": "sg:person.011505670225.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SISSA, Via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/grid.5970.b", 
              "name": [
                "SISSA, Via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rizi", 
            "givenName": "Giovanni", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep04(2021)216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137370838", 
              "https://doi.org/10.1007/jhep04(2021)216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2016)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016985795", 
              "https://doi.org/10.1007/jhep05(2016)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006686798", 
              "https://doi.org/10.1007/jhep07(2016)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125631978", 
              "https://doi.org/10.1007/jhep03(2020)081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111158096", 
              "https://doi.org/10.1007/jhep01(2019)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125693926", 
              "https://doi.org/10.1007/jhep03(2020)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125558891", 
              "https://doi.org/10.1007/jhep03(2020)057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084517134", 
              "https://doi.org/10.1007/jhep04(2017)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092444649", 
              "https://doi.org/10.1007/jhep10(2017)190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2018)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110638538", 
              "https://doi.org/10.1007/jhep12(2018)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2016)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046946545", 
              "https://doi.org/10.1007/jhep01(2016)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2019)062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121953317", 
              "https://doi.org/10.1007/jhep10(2019)062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2019)134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1115582949", 
              "https://doi.org/10.1007/jhep05(2019)134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2018)119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110099937", 
              "https://doi.org/10.1007/jhep11(2018)119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2019)108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112212728", 
              "https://doi.org/10.1007/jhep02(2019)108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2019)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123258702", 
              "https://doi.org/10.1007/jhep12(2019)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019197655", 
              "https://doi.org/10.1007/jhep08(2013)115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2021)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134310617", 
              "https://doi.org/10.1007/jhep01(2021)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2020)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132951630", 
              "https://doi.org/10.1007/jhep11(2020)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2020)017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123979545", 
              "https://doi.org/10.1007/jhep01(2020)017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020208042", 
              "https://doi.org/10.1007/jhep08(2015)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2017)090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091289583", 
              "https://doi.org/10.1007/jhep08(2017)090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/07/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023637820", 
              "https://doi.org/10.1088/1126-6708/1999/07/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105304117", 
              "https://doi.org/10.1007/jhep07(2018)018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033125905", 
              "https://doi.org/10.1007/jhep08(2016)064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100960822", 
              "https://doi.org/10.1007/jhep02(2018)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2017)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091107532", 
              "https://doi.org/10.1007/jhep08(2017)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2019)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120524173", 
              "https://doi.org/10.1007/jhep08(2019)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2019)134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117604020", 
              "https://doi.org/10.1007/jhep06(2019)134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129326443", 
              "https://doi.org/10.1007/jhep07(2020)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-019-03679-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124051061", 
              "https://doi.org/10.1007/s00220-019-03679-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2018)058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109858433", 
              "https://doi.org/10.1007/jhep11(2018)058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125956469", 
              "https://doi.org/10.1007/jhep03(2020)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131290173", 
              "https://doi.org/10.1007/jhep09(2020)184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2021)025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134420318", 
              "https://doi.org/10.1007/jhep01(2021)025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2020)091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126787786", 
              "https://doi.org/10.1007/jhep04(2020)091"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-05-10", 
        "datePublishedReg": "2021-05-10", 
        "description": "We study the Bethe Ansatz formula for the superconformal index, in the case of 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 super-Yang-Mills with gauge group SU(N). We observe that not all solutions to the Bethe Ansatz Equations (BAEs) contribute to the index, and thus formulate \u201creduced BAEs\u201d such that all and only their solutions contribute. We then propose, sharpening a conjecture of Arabi Ardehali et al. [1], that there is a one-to-one correspondence between branches of solutions to the reduced BAEs and vacua of the 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 1* theory. We test the proposal in the case of SU(2) and SU(3). In the case of SU(3), we confirm that there is a continuous family of solutions, whose contribution to the index is non-vanishing.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep05(2021)061", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8964082", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "Bethe ansatz equations", 
          "superconformal index", 
          "branches of solutions", 
          "Bethe ansatz formulas", 
          "ansatz equations", 
          "Bethe ansatz", 
          "continuous family", 
          "Yang-Mills", 
          "gauge theory", 
          "gauge group", 
          "solution", 
          "theory", 
          "ansatz", 
          "equations", 
          "conjecture", 
          "formula", 
          "correspondence", 
          "vacuum", 
          "cases", 
          "branches", 
          "al", 
          "contribution", 
          "proposal", 
          "index", 
          "family", 
          "group"
        ], 
        "name": "Superconformal index of low-rank gauge theories via the Bethe Ansatz", 
        "pagination": "61", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1137937239"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep05(2021)061"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep05(2021)061", 
          "https://app.dimensions.ai/details/publication/pub.1137937239"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_897.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep05(2021)061"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)061'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)061'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)061'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2021)061'


     

    This table displays all metadata directly associated to this object as RDF triples.

    244 TRIPLES      21 PREDICATES      87 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep05(2021)061 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndb1e7f52fe374460a3100286f838beb1
    4 schema:citation sg:pub.10.1007/jhep01(2016)097
    5 sg:pub.10.1007/jhep01(2019)035
    6 sg:pub.10.1007/jhep01(2020)017
    7 sg:pub.10.1007/jhep01(2021)001
    8 sg:pub.10.1007/jhep01(2021)025
    9 sg:pub.10.1007/jhep02(2018)054
    10 sg:pub.10.1007/jhep02(2019)108
    11 sg:pub.10.1007/jhep03(2020)057
    12 sg:pub.10.1007/jhep03(2020)081
    13 sg:pub.10.1007/jhep03(2020)088
    14 sg:pub.10.1007/jhep03(2020)164
    15 sg:pub.10.1007/jhep04(2017)014
    16 sg:pub.10.1007/jhep04(2020)091
    17 sg:pub.10.1007/jhep04(2021)216
    18 sg:pub.10.1007/jhep05(2016)054
    19 sg:pub.10.1007/jhep05(2019)134
    20 sg:pub.10.1007/jhep06(2019)134
    21 sg:pub.10.1007/jhep07(2016)036
    22 sg:pub.10.1007/jhep07(2018)018
    23 sg:pub.10.1007/jhep07(2020)073
    24 sg:pub.10.1007/jhep08(2013)115
    25 sg:pub.10.1007/jhep08(2015)106
    26 sg:pub.10.1007/jhep08(2016)064
    27 sg:pub.10.1007/jhep08(2017)023
    28 sg:pub.10.1007/jhep08(2017)090
    29 sg:pub.10.1007/jhep08(2019)120
    30 sg:pub.10.1007/jhep09(2020)184
    31 sg:pub.10.1007/jhep10(2017)190
    32 sg:pub.10.1007/jhep10(2019)062
    33 sg:pub.10.1007/jhep11(2018)058
    34 sg:pub.10.1007/jhep11(2018)119
    35 sg:pub.10.1007/jhep11(2020)150
    36 sg:pub.10.1007/jhep12(2018)001
    37 sg:pub.10.1007/jhep12(2019)054
    38 sg:pub.10.1007/s00220-007-0258-7
    39 sg:pub.10.1007/s00220-019-03679-y
    40 sg:pub.10.1088/1126-6708/1999/07/021
    41 schema:datePublished 2021-05-10
    42 schema:datePublishedReg 2021-05-10
    43 schema:description We study the Bethe Ansatz formula for the superconformal index, in the case of 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super-Yang-Mills with gauge group SU(N). We observe that not all solutions to the Bethe Ansatz Equations (BAEs) contribute to the index, and thus formulate “reduced BAEs” such that all and only their solutions contribute. We then propose, sharpening a conjecture of Arabi Ardehali et al. [1], that there is a one-to-one correspondence between branches of solutions to the reduced BAEs and vacua of the 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1* theory. We test the proposal in the case of SU(2) and SU(3). In the case of SU(3), we confirm that there is a continuous family of solutions, whose contribution to the index is non-vanishing.
    44 schema:genre article
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N514edc7e2de84c38aee8a39588744a59
    47 N6d4bd264cf0d4cab8724efeb9ef51229
    48 sg:journal.1052482
    49 schema:keywords Bethe ansatz
    50 Bethe ansatz equations
    51 Bethe ansatz formulas
    52 Yang-Mills
    53 al
    54 ansatz
    55 ansatz equations
    56 branches
    57 branches of solutions
    58 cases
    59 conjecture
    60 continuous family
    61 contribution
    62 correspondence
    63 equations
    64 family
    65 formula
    66 gauge group
    67 gauge theory
    68 group
    69 index
    70 proposal
    71 solution
    72 superconformal index
    73 theory
    74 vacuum
    75 schema:name Superconformal index of low-rank gauge theories via the Bethe Ansatz
    76 schema:pagination 61
    77 schema:productId N0b364a8c9fdc460eae87b6ea8abb702d
    78 N3f6fd12fdb61448bacc947a2dcd66baa
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137937239
    80 https://doi.org/10.1007/jhep05(2021)061
    81 schema:sdDatePublished 2022-12-01T06:43
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N5a5e1ef925b54b03ac9c7912f05c3c57
    84 schema:url https://doi.org/10.1007/jhep05(2021)061
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N0b364a8c9fdc460eae87b6ea8abb702d schema:name dimensions_id
    89 schema:value pub.1137937239
    90 rdf:type schema:PropertyValue
    91 N3f6fd12fdb61448bacc947a2dcd66baa schema:name doi
    92 schema:value 10.1007/jhep05(2021)061
    93 rdf:type schema:PropertyValue
    94 N514edc7e2de84c38aee8a39588744a59 schema:volumeNumber 2021
    95 rdf:type schema:PublicationVolume
    96 N5a5e1ef925b54b03ac9c7912f05c3c57 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 N6d4bd264cf0d4cab8724efeb9ef51229 schema:issueNumber 5
    99 rdf:type schema:PublicationIssue
    100 N9d18f3b9a73b420cb423f7f8576f8789 rdf:first Nda549c1ac0494e9da5156121d14fbb8a
    101 rdf:rest rdf:nil
    102 Nda549c1ac0494e9da5156121d14fbb8a schema:affiliation grid-institutes:grid.5970.b
    103 schema:familyName Rizi
    104 schema:givenName Giovanni
    105 rdf:type schema:Person
    106 Ndb1e7f52fe374460a3100286f838beb1 rdf:first sg:person.011505670225.30
    107 rdf:rest N9d18f3b9a73b420cb423f7f8576f8789
    108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Mathematical Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Pure Mathematics
    113 rdf:type schema:DefinedTerm
    114 sg:grant.8964082 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep05(2021)061
    115 rdf:type schema:MonetaryGrant
    116 sg:journal.1052482 schema:issn 1029-8479
    117 1126-6708
    118 schema:name Journal of High Energy Physics
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.419330.c
    122 schema:familyName Benini
    123 schema:givenName Francesco
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
    125 rdf:type schema:Person
    126 sg:pub.10.1007/jhep01(2016)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046946545
    127 https://doi.org/10.1007/jhep01(2016)097
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep01(2019)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111158096
    130 https://doi.org/10.1007/jhep01(2019)035
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep01(2020)017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123979545
    133 https://doi.org/10.1007/jhep01(2020)017
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep01(2021)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134310617
    136 https://doi.org/10.1007/jhep01(2021)001
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep01(2021)025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134420318
    139 https://doi.org/10.1007/jhep01(2021)025
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep02(2018)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100960822
    142 https://doi.org/10.1007/jhep02(2018)054
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep02(2019)108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112212728
    145 https://doi.org/10.1007/jhep02(2019)108
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep03(2020)057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125558891
    148 https://doi.org/10.1007/jhep03(2020)057
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep03(2020)081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125631978
    151 https://doi.org/10.1007/jhep03(2020)081
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep03(2020)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125693926
    154 https://doi.org/10.1007/jhep03(2020)088
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep03(2020)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125956469
    157 https://doi.org/10.1007/jhep03(2020)164
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep04(2017)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517134
    160 https://doi.org/10.1007/jhep04(2017)014
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep04(2020)091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126787786
    163 https://doi.org/10.1007/jhep04(2020)091
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/jhep04(2021)216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137370838
    166 https://doi.org/10.1007/jhep04(2021)216
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/jhep05(2016)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016985795
    169 https://doi.org/10.1007/jhep05(2016)054
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/jhep05(2019)134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115582949
    172 https://doi.org/10.1007/jhep05(2019)134
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/jhep06(2019)134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117604020
    175 https://doi.org/10.1007/jhep06(2019)134
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/jhep07(2016)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006686798
    178 https://doi.org/10.1007/jhep07(2016)036
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/jhep07(2018)018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105304117
    181 https://doi.org/10.1007/jhep07(2018)018
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/jhep07(2020)073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129326443
    184 https://doi.org/10.1007/jhep07(2020)073
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/jhep08(2013)115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019197655
    187 https://doi.org/10.1007/jhep08(2013)115
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/jhep08(2015)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208042
    190 https://doi.org/10.1007/jhep08(2015)106
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/jhep08(2016)064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033125905
    193 https://doi.org/10.1007/jhep08(2016)064
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/jhep08(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091107532
    196 https://doi.org/10.1007/jhep08(2017)023
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/jhep08(2017)090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091289583
    199 https://doi.org/10.1007/jhep08(2017)090
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/jhep08(2019)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120524173
    202 https://doi.org/10.1007/jhep08(2019)120
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/jhep09(2020)184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131290173
    205 https://doi.org/10.1007/jhep09(2020)184
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/jhep10(2017)190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092444649
    208 https://doi.org/10.1007/jhep10(2017)190
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/jhep10(2019)062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121953317
    211 https://doi.org/10.1007/jhep10(2019)062
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/jhep11(2018)058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109858433
    214 https://doi.org/10.1007/jhep11(2018)058
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/jhep11(2018)119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110099937
    217 https://doi.org/10.1007/jhep11(2018)119
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/jhep11(2020)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132951630
    220 https://doi.org/10.1007/jhep11(2020)150
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/jhep12(2018)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110638538
    223 https://doi.org/10.1007/jhep12(2018)001
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/jhep12(2019)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123258702
    226 https://doi.org/10.1007/jhep12(2019)054
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    229 https://doi.org/10.1007/s00220-007-0258-7
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00220-019-03679-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1124051061
    232 https://doi.org/10.1007/s00220-019-03679-y
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1088/1126-6708/1999/07/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023637820
    235 https://doi.org/10.1088/1126-6708/1999/07/021
    236 rdf:type schema:CreativeWork
    237 grid-institutes:grid.419330.c schema:alternateName ICTP, Strada Costiera 11, 34151, Trieste, Italy
    238 schema:name ICTP, Strada Costiera 11, 34151, Trieste, Italy
    239 INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy
    240 SISSA, Via Bonomea 265, 34136, Trieste, Italy
    241 rdf:type schema:Organization
    242 grid-institutes:grid.5970.b schema:alternateName SISSA, Via Bonomea 265, 34136, Trieste, Italy
    243 schema:name SISSA, Via Bonomea 265, 34136, Trieste, Italy
    244 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...