A “Lagrangian” for the E7 superconformal theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-05-30

AUTHORS

Prarit Agarwal, Kazunobu Maruyoshi, Jaewon Song

ABSTRACT

We find an N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} gauge theory that flows to the rank-one N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} superconformal field theory with E7 flavor symmetry. We first obtain a Lagrangian description for the R0,N theory, which appears in the S-dual description of the SU(N) gauge theory with 2N fundamental hypermultiplets. This is a straightforward generalization of the proposed Lagrangian description for the E6 theory. The E7 theory is then obtained via partial Higgsing of the R0,4 theory. From this Lagrangian description, we compute the full superconformal index. We also consider twisted dimensional reduction on S2 to obtain N=04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(0,4\right) $$\end{document} theory for the E7 one instanton string and compute its elliptic genus. More... »

PAGES

193

References to SciGraph publications

  • 2015-02-17. Chiral algebras for trinion theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-18. On exceptional instanton strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-10-06. Infinitely many N=1 dualities from m + 1 − m = 1 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-16. Lagrangians for generalized Argyres-Douglas theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06-13. New =1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-08. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-03. Bootstrapping the superconformal index with surface defects in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-29. (0,4) dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-30. Exceptional indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-05. Notes on integral identities for 3d supersymmetric dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-07. On the classification of 6D SCFTs and generalized ADE orbifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-25. Abelianization and sequential confinement in 2 + 1 dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-28. New N = 1 dualities from M5-branes and outer-automorphism twists in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-17. T-branes, monopoles and S-duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-17. 2d index and surface operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03-29. 2d TQFT structure of the superconformal indices with outer-automorphism twists in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10-31. N =1 Lagrangians for generalized Argyres-Douglas theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-09-22. Central charges of 𝒩 = 2 superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07-13. Counting exceptional instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2014-11-02. Elliptic Genera of 2d N = 2 Gauge Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-10-01. =1 dynamics with TN theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-24. The superconformal index of the E6 SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-11-24. On the reduction of 4d N=1 theories on S2 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02-14. N=1 deformations and RG flows of N=2 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-12-20. N =1 Deformations and RG flows of N =2 SCFTs, part II: non-principal deformations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-01-15. A holographic computation of the central charges of d = 4, 𝒩 = 2 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-03-10. Quiver tails and N=1 SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-03-15. The ABCDEFG of instantons and W-algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep05(2018)193

    DOI

    http://dx.doi.org/10.1007/jhep05(2018)193

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104332448


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 08826, Seoul, Korea", 
              "id": "http://www.grid.ac/institutes/grid.31501.36", 
              "name": [
                "Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 08826, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agarwal", 
            "givenName": "Prarit", 
            "id": "sg:person.011336674601.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.263319.c", 
              "name": [
                "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maruyoshi", 
            "givenName": "Kazunobu", 
            "id": "sg:person.014757666656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, San Diego, 9500 Gilman Dr, 92093, La Jolla, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, 02455, Seoul, Korea", 
                "Department of Physics, University of California, San Diego, 9500 Gilman Dr, 92093, La Jolla, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Jaewon", 
            "id": "sg:person.016403722241.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017023640", 
              "https://doi.org/10.1007/jhep03(2014)133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103247482", 
              "https://doi.org/10.1007/jhep04(2018)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2015)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024402067", 
              "https://doi.org/10.1007/jhep10(2015)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030213861", 
              "https://doi.org/10.1007/jhep01(2013)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025450706", 
              "https://doi.org/10.1007/jhep03(2012)045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048280868", 
              "https://doi.org/10.1007/jhep07(2012)085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049102477", 
              "https://doi.org/10.1007/jhep02(2015)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010569175", 
              "https://doi.org/10.1007/jhep06(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2013)171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033501882", 
              "https://doi.org/10.1007/jhep03(2013)171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092261101", 
              "https://doi.org/10.1007/jhep10(2017)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2210-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037293419", 
              "https://doi.org/10.1007/s00220-014-2210-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/01/037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033149929", 
              "https://doi.org/10.1088/1126-6708/2008/01/037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083828659", 
              "https://doi.org/10.1007/jhep02(2017)075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2016)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032589095", 
              "https://doi.org/10.1007/jhep12(2016)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091834557", 
              "https://doi.org/10.1007/jhep09(2017)081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092261098", 
              "https://doi.org/10.1007/jhep10(2017)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093118544", 
              "https://doi.org/10.1007/jhep10(2017)211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092421128", 
              "https://doi.org/10.1007/jhep10(2017)173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033814222", 
              "https://doi.org/10.1007/jhep08(2010)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026965803", 
              "https://doi.org/10.1007/jhep10(2013)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028765881", 
              "https://doi.org/10.1007/jhep03(2014)080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024279031", 
              "https://doi.org/10.1007/jhep03(2016)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/09/109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046810888", 
              "https://doi.org/10.1088/1126-6708/2008/09/109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006387055", 
              "https://doi.org/10.1007/jhep11(2015)163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2015)049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053394950", 
              "https://doi.org/10.1007/jhep03(2015)049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016623483", 
              "https://doi.org/10.1007/jhep05(2014)028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042516890", 
              "https://doi.org/10.1007/jhep05(2012)145"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-05-30", 
        "datePublishedReg": "2018-05-30", 
        "description": "We find an N=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=1 $$\\end{document} gauge theory that flows to the rank-one N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=2 $$\\end{document} superconformal field theory with E7 flavor symmetry. We first obtain a Lagrangian description for the R0,N theory, which appears in the S-dual description of the SU(N) gauge theory with 2N fundamental hypermultiplets. This is a straightforward generalization of the proposed Lagrangian description for the E6 theory. The E7 theory is then obtained via partial Higgsing of the R0,4 theory. From this Lagrangian description, we compute the full superconformal index. We also consider twisted dimensional reduction on S2 to obtain N=04\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=\\left(0,4\\right) $$\\end{document} theory for the E7 one instanton string and compute its elliptic genus.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep05(2018)193", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6839718", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "keywords": [
          "Lagrangian description", 
          "gauge theory", 
          "full superconformal index", 
          "superconformal field theories", 
          "field theory", 
          "superconformal theories", 
          "dual description", 
          "partial Higgsing", 
          "elliptic genus", 
          "fundamental hypermultiplets", 
          "dimensional reduction", 
          "rank one", 
          "straightforward generalization", 
          "superconformal index", 
          "E6 theory", 
          "flavor symmetry", 
          "theory", 
          "Higgsing", 
          "Lagrangian", 
          "description", 
          "hypermultiplets", 
          "symmetry", 
          "generalization", 
          "strings", 
          "S2", 
          "reduction", 
          "index", 
          "genus"
        ], 
        "name": "A \u201cLagrangian\u201d for the E7 superconformal theory", 
        "pagination": "193", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104332448"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep05(2018)193"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep05(2018)193", 
          "https://app.dimensions.ai/details/publication/pub.1104332448"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_794.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep05(2018)193"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2018)193'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2018)193'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2018)193'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2018)193'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      22 PREDICATES      87 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep05(2018)193 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4777f49e6ea449a5b43eb8a61617a764
    4 schema:citation sg:pub.10.1007/jhep01(2013)022
    5 sg:pub.10.1007/jhep02(2015)113
    6 sg:pub.10.1007/jhep02(2017)075
    7 sg:pub.10.1007/jhep03(2010)032
    8 sg:pub.10.1007/jhep03(2012)045
    9 sg:pub.10.1007/jhep03(2013)171
    10 sg:pub.10.1007/jhep03(2014)080
    11 sg:pub.10.1007/jhep03(2014)133
    12 sg:pub.10.1007/jhep03(2015)049
    13 sg:pub.10.1007/jhep03(2016)185
    14 sg:pub.10.1007/jhep04(2018)022
    15 sg:pub.10.1007/jhep05(2012)145
    16 sg:pub.10.1007/jhep05(2014)028
    17 sg:pub.10.1007/jhep06(2010)100
    18 sg:pub.10.1007/jhep06(2013)056
    19 sg:pub.10.1007/jhep07(2012)085
    20 sg:pub.10.1007/jhep08(2010)107
    21 sg:pub.10.1007/jhep08(2012)034
    22 sg:pub.10.1007/jhep09(2017)081
    23 sg:pub.10.1007/jhep10(2013)010
    24 sg:pub.10.1007/jhep10(2015)035
    25 sg:pub.10.1007/jhep10(2017)106
    26 sg:pub.10.1007/jhep10(2017)113
    27 sg:pub.10.1007/jhep10(2017)173
    28 sg:pub.10.1007/jhep10(2017)211
    29 sg:pub.10.1007/jhep11(2010)099
    30 sg:pub.10.1007/jhep11(2015)163
    31 sg:pub.10.1007/jhep12(2016)103
    32 sg:pub.10.1007/s00220-012-1607-8
    33 sg:pub.10.1007/s00220-014-2210-y
    34 sg:pub.10.1088/1126-6708/2007/12/088
    35 sg:pub.10.1088/1126-6708/2008/01/037
    36 sg:pub.10.1088/1126-6708/2008/09/109
    37 sg:pub.10.1088/1126-6708/2009/09/052
    38 schema:datePublished 2018-05-30
    39 schema:datePublishedReg 2018-05-30
    40 schema:description We find an N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} gauge theory that flows to the rank-one N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} superconformal field theory with E7 flavor symmetry. We first obtain a Lagrangian description for the R0,N theory, which appears in the S-dual description of the SU(N) gauge theory with 2N fundamental hypermultiplets. This is a straightforward generalization of the proposed Lagrangian description for the E6 theory. The E7 theory is then obtained via partial Higgsing of the R0,4 theory. From this Lagrangian description, we compute the full superconformal index. We also consider twisted dimensional reduction on S2 to obtain N=04\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(0,4\right) $$\end{document} theory for the E7 one instanton string and compute its elliptic genus.
    41 schema:genre article
    42 schema:inLanguage en
    43 schema:isAccessibleForFree true
    44 schema:isPartOf N4af0bb2dbd8549679490cc4a12d490de
    45 Nb3e1c3973651413e8fd6cef7da079644
    46 sg:journal.1052482
    47 schema:keywords E6 theory
    48 Higgsing
    49 Lagrangian
    50 Lagrangian description
    51 S2
    52 description
    53 dimensional reduction
    54 dual description
    55 elliptic genus
    56 field theory
    57 flavor symmetry
    58 full superconformal index
    59 fundamental hypermultiplets
    60 gauge theory
    61 generalization
    62 genus
    63 hypermultiplets
    64 index
    65 partial Higgsing
    66 rank one
    67 reduction
    68 straightforward generalization
    69 strings
    70 superconformal field theories
    71 superconformal index
    72 superconformal theories
    73 symmetry
    74 theory
    75 schema:name A “Lagrangian” for the E7 superconformal theory
    76 schema:pagination 193
    77 schema:productId N1b6d8da951a44d6382e211f7f81f1eeb
    78 N2f51c4a130f04823ba48dabc7aa1aa54
    79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104332448
    80 https://doi.org/10.1007/jhep05(2018)193
    81 schema:sdDatePublished 2022-06-01T22:20
    82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    83 schema:sdPublisher N12435bbb59de4d20822e32a8cf360444
    84 schema:url https://doi.org/10.1007/jhep05(2018)193
    85 sgo:license sg:explorer/license/
    86 sgo:sdDataset articles
    87 rdf:type schema:ScholarlyArticle
    88 N07eeda84aaee46ba8da5075deaed3591 rdf:first sg:person.014757666656.30
    89 rdf:rest Nf5f7e51851d643088c44fe9225906bfd
    90 N12435bbb59de4d20822e32a8cf360444 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N1b6d8da951a44d6382e211f7f81f1eeb schema:name doi
    93 schema:value 10.1007/jhep05(2018)193
    94 rdf:type schema:PropertyValue
    95 N2f51c4a130f04823ba48dabc7aa1aa54 schema:name dimensions_id
    96 schema:value pub.1104332448
    97 rdf:type schema:PropertyValue
    98 N4777f49e6ea449a5b43eb8a61617a764 rdf:first sg:person.011336674601.46
    99 rdf:rest N07eeda84aaee46ba8da5075deaed3591
    100 N4af0bb2dbd8549679490cc4a12d490de schema:issueNumber 5
    101 rdf:type schema:PublicationIssue
    102 Nb3e1c3973651413e8fd6cef7da079644 schema:volumeNumber 2018
    103 rdf:type schema:PublicationVolume
    104 Nf5f7e51851d643088c44fe9225906bfd rdf:first sg:person.016403722241.33
    105 rdf:rest rdf:nil
    106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Mathematical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Pure Mathematics
    111 rdf:type schema:DefinedTerm
    112 sg:grant.6839718 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep05(2018)193
    113 rdf:type schema:MonetaryGrant
    114 sg:journal.1052482 schema:issn 1029-8479
    115 1126-6708
    116 schema:name Journal of High Energy Physics
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.011336674601.46 schema:affiliation grid-institutes:grid.31501.36
    120 schema:familyName Agarwal
    121 schema:givenName Prarit
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011336674601.46
    123 rdf:type schema:Person
    124 sg:person.014757666656.30 schema:affiliation grid-institutes:grid.263319.c
    125 schema:familyName Maruyoshi
    126 schema:givenName Kazunobu
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30
    128 rdf:type schema:Person
    129 sg:person.016403722241.33 schema:affiliation grid-institutes:grid.266100.3
    130 schema:familyName Song
    131 schema:givenName Jaewon
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33
    133 rdf:type schema:Person
    134 sg:pub.10.1007/jhep01(2013)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030213861
    135 https://doi.org/10.1007/jhep01(2013)022
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep02(2015)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049102477
    138 https://doi.org/10.1007/jhep02(2015)113
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep02(2017)075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083828659
    141 https://doi.org/10.1007/jhep02(2017)075
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    144 https://doi.org/10.1007/jhep03(2010)032
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep03(2012)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450706
    147 https://doi.org/10.1007/jhep03(2012)045
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep03(2013)171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033501882
    150 https://doi.org/10.1007/jhep03(2013)171
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep03(2014)080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028765881
    153 https://doi.org/10.1007/jhep03(2014)080
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep03(2014)133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023640
    156 https://doi.org/10.1007/jhep03(2014)133
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep03(2015)049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053394950
    159 https://doi.org/10.1007/jhep03(2015)049
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep03(2016)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024279031
    162 https://doi.org/10.1007/jhep03(2016)185
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep04(2018)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103247482
    165 https://doi.org/10.1007/jhep04(2018)022
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep05(2012)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516890
    168 https://doi.org/10.1007/jhep05(2012)145
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep05(2014)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623483
    171 https://doi.org/10.1007/jhep05(2014)028
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    174 https://doi.org/10.1007/jhep06(2010)100
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/jhep06(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010569175
    177 https://doi.org/10.1007/jhep06(2013)056
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/jhep07(2012)085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048280868
    180 https://doi.org/10.1007/jhep07(2012)085
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/jhep08(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814222
    183 https://doi.org/10.1007/jhep08(2010)107
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    186 https://doi.org/10.1007/jhep08(2012)034
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/jhep09(2017)081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091834557
    189 https://doi.org/10.1007/jhep09(2017)081
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/jhep10(2013)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965803
    192 https://doi.org/10.1007/jhep10(2013)010
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/jhep10(2015)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024402067
    195 https://doi.org/10.1007/jhep10(2015)035
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/jhep10(2017)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261098
    198 https://doi.org/10.1007/jhep10(2017)106
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/jhep10(2017)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261101
    201 https://doi.org/10.1007/jhep10(2017)113
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/jhep10(2017)173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092421128
    204 https://doi.org/10.1007/jhep10(2017)173
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/jhep10(2017)211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093118544
    207 https://doi.org/10.1007/jhep10(2017)211
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    210 https://doi.org/10.1007/jhep11(2010)099
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/jhep11(2015)163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006387055
    213 https://doi.org/10.1007/jhep11(2015)163
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/jhep12(2016)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032589095
    216 https://doi.org/10.1007/jhep12(2016)103
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    219 https://doi.org/10.1007/s00220-012-1607-8
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s00220-014-2210-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037293419
    222 https://doi.org/10.1007/s00220-014-2210-y
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    225 https://doi.org/10.1088/1126-6708/2007/12/088
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1088/1126-6708/2008/01/037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033149929
    228 https://doi.org/10.1088/1126-6708/2008/01/037
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1088/1126-6708/2008/09/109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046810888
    231 https://doi.org/10.1088/1126-6708/2008/09/109
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    234 https://doi.org/10.1088/1126-6708/2009/09/052
    235 rdf:type schema:CreativeWork
    236 grid-institutes:grid.263319.c schema:alternateName Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan
    237 schema:name Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, 180-8633, Tokyo, Japan
    238 rdf:type schema:Organization
    239 grid-institutes:grid.266100.3 schema:alternateName Department of Physics, University of California, San Diego, 9500 Gilman Dr, 92093, La Jolla, CA, U.S.A.
    240 schema:name Department of Physics, University of California, San Diego, 9500 Gilman Dr, 92093, La Jolla, CA, U.S.A.
    241 School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, 02455, Seoul, Korea
    242 rdf:type schema:Organization
    243 grid-institutes:grid.31501.36 schema:alternateName Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 08826, Seoul, Korea
    244 schema:name Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, 08826, Seoul, Korea
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...