Super-PINGU for measurement of the leptonic CP-phase with atmospheric neutrinos View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05

AUTHORS

Soebur Razzaque, A.Yu. Smirnov

ABSTRACT

We explore a possibility to measure the CP-violating phase δ using multimegaton scale ice or water Cherenkov detectors with low, (0.2-1) GeV, energy threshold assuming that the neutrino mass hierarchy is identified. We elaborate the relevant theoretical and phenomenological aspects of this possibility. The distributions of the νμ (track) and νe (cascade) events in the neutrino energy and zenith angle (Eν − θz ) plane have been computed for different values of δ. We study properties and distinguishability of the distributions before and after smearing over the neutrino energy and zenith angle. The CP-violation effects are not washed out by smearing, and furthermore, the sensitivity to δ increases with decrease of the energy threshold. The νe events contribute to the CP-sensitivity as much as the νμ events. While sensitivity of PINGU to δ is low, we find that future possible upgrade, Super-PINGU, with few megaton effective volume at (0.5-1) GeV and e.g. after 4 years of exposure will be able to disentangle values of δ = π/2, π, 3π/2 from δ = 0 with “distinguishability” (∼ significance in σ’s) Sσtot = (3 − 8), (6 − 14), (3 − 8) correspondingly. Here the intervals of Sσot are due to various uncertainties of detection of the low energy events, especially the flavor identification, systematics, etc. Super-PINGU can be used simultaneously for the proton decay searches. More... »

PAGES

139

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep05(2015)139

DOI

http://dx.doi.org/10.1007/jhep05(2015)139

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023016455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Johannesburg", 
          "id": "https://www.grid.ac/institutes/grid.412988.e", 
          "name": [
            "Department of Physics, University of Johannesburg, PO Box 524, 2006, Auckland Park, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Razzaque", 
        "givenName": "Soebur", 
        "id": "sg:person.01242332025.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242332025.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Centre for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117, Heidelberg, Germany", 
            "International Centre for Theoretical Physics,, Strada Costiera 11, I-34100, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnov", 
        "givenName": "A.Yu.", 
        "id": "sg:person.0771061465.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771061465.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevd.65.073023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001152812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.65.073023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001152812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4883450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003186295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(02)01907-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003630210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2004.08.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004673148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005083717", 
          "https://doi.org/10.1007/jhep05(2014)109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005083717", 
          "https://doi.org/10.1007/jhep05(2014)109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.073005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007410330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.66.073005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007410330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2014.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010061140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysbps.2013.04.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011197074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.52.4985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013542483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.52.4985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013542483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014580162", 
          "https://doi.org/10.1007/jhep05(2014)094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2014)094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014580162", 
          "https://doi.org/10.1007/jhep05(2014)094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016906656", 
          "https://doi.org/10.1088/1126-6708/2006/01/053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016906656", 
          "https://doi.org/10.1088/1126-6708/2006/01/053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.093006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017138724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.093006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017138724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018558356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.84.515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018558356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.87.053006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021754253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.87.053006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021754253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.89.093018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022738445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.89.093018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022738445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2003.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024715831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.013013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025456381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.88.013013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025456381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2012.12.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027590828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.86.035501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027982342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevc.86.035501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027982342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2013)082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032438139", 
          "https://doi.org/10.1007/jhep02(2013)082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/06/072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032744852", 
          "https://doi.org/10.1088/1126-6708/2008/06/072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2014)024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032949889", 
          "https://doi.org/10.1007/jhep09(2014)024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ppnp.2007.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033364208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/05/077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033998416", 
          "https://doi.org/10.1088/1126-6708/2007/05/077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9201(81)90046-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034496796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-9201(81)90046-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034496796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.89.011301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035993200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.89.011301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035993200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.093003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039367511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.093003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039367511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.68.037301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040714111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.68.037301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040714111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2014.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041020444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.87.113007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041163754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.87.113007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041163754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.astropartphys.2014.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041997671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep04(2013)008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042220894", 
          "https://doi.org/10.1007/jhep04(2013)008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.70.033010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042418291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.70.033010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042418291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2013)089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043902798", 
          "https://doi.org/10.1007/jhep09(2013)089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2014)052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044594723", 
          "https://doi.org/10.1007/jhep11(2014)052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.093003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046631319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.093003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046631319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2014)150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047329921", 
          "https://doi.org/10.1007/jhep06(2014)150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2006.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052540639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021773231103725x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062915574"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "We explore a possibility to measure the CP-violating phase \u03b4 using multimegaton scale ice or water Cherenkov detectors with low, (0.2-1) GeV, energy threshold assuming that the neutrino mass hierarchy is identified. We elaborate the relevant theoretical and phenomenological aspects of this possibility. The distributions of the \u03bd\u03bc (track) and \u03bde (cascade) events in the neutrino energy and zenith angle (E\u03bd \u2212 \u03b8z ) plane have been computed for different values of \u03b4. We study properties and distinguishability of the distributions before and after smearing over the neutrino energy and zenith angle. The CP-violation effects are not washed out by smearing, and furthermore, the sensitivity to \u03b4 increases with decrease of the energy threshold. The \u03bde events contribute to the CP-sensitivity as much as the \u03bd\u03bc events. While sensitivity of PINGU to \u03b4 is low, we find that future possible upgrade, Super-PINGU, with few megaton effective volume at (0.5-1) GeV and e.g. after 4 years of exposure will be able to disentangle values of \u03b4 = \u03c0/2, \u03c0, 3\u03c0/2 from \u03b4 = 0 with \u201cdistinguishability\u201d (\u223c significance in \u03c3\u2019s) S\u03c3tot = (3 \u2212 8), (6 \u2212 14), (3 \u2212 8) correspondingly. Here the intervals of S\u03c3ot are due to various uncertainties of detection of the low energy events, especially the flavor identification, systematics, etc. Super-PINGU can be used simultaneously for the proton decay searches.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep05(2015)139", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2015"
      }
    ], 
    "name": "Super-PINGU for measurement of the leptonic CP-phase with atmospheric neutrinos", 
    "pagination": "139", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6da7cf2ffbce4753e1b94c519b2c195a64c91351baa38d56b30b503b78531f30"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep05(2015)139"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023016455"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep05(2015)139", 
      "https://app.dimensions.ai/details/publication/pub.1023016455"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88227_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP05%282015%29139"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2015)139'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2015)139'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2015)139'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2015)139'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep05(2015)139 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7c1cbf8821254271bbb5a0b7a850f248
4 schema:citation sg:pub.10.1007/jhep02(2013)082
5 sg:pub.10.1007/jhep04(2013)008
6 sg:pub.10.1007/jhep05(2014)094
7 sg:pub.10.1007/jhep05(2014)109
8 sg:pub.10.1007/jhep06(2014)150
9 sg:pub.10.1007/jhep09(2013)089
10 sg:pub.10.1007/jhep09(2014)024
11 sg:pub.10.1007/jhep11(2014)052
12 sg:pub.10.1088/1126-6708/2006/01/053
13 sg:pub.10.1088/1126-6708/2007/05/077
14 sg:pub.10.1088/1126-6708/2008/06/072
15 https://doi.org/10.1016/0031-9201(81)90046-7
16 https://doi.org/10.1016/j.astropartphys.2014.07.010
17 https://doi.org/10.1016/j.nuclphysb.2003.12.017
18 https://doi.org/10.1016/j.nuclphysb.2014.04.013
19 https://doi.org/10.1016/j.nuclphysb.2014.05.016
20 https://doi.org/10.1016/j.nuclphysbps.2013.04.107
21 https://doi.org/10.1016/j.physletb.2004.08.049
22 https://doi.org/10.1016/j.physletb.2006.10.005
23 https://doi.org/10.1016/j.physletb.2012.12.016
24 https://doi.org/10.1016/j.ppnp.2007.10.001
25 https://doi.org/10.1016/s0370-2693(02)01907-x
26 https://doi.org/10.1063/1.4883450
27 https://doi.org/10.1103/physrevc.86.035501
28 https://doi.org/10.1103/physrevd.52.4985
29 https://doi.org/10.1103/physrevd.65.073023
30 https://doi.org/10.1103/physrevd.66.073005
31 https://doi.org/10.1103/physrevd.68.037301
32 https://doi.org/10.1103/physrevd.70.033010
33 https://doi.org/10.1103/physrevd.78.093003
34 https://doi.org/10.1103/physrevd.87.053006
35 https://doi.org/10.1103/physrevd.87.113007
36 https://doi.org/10.1103/physrevd.88.013013
37 https://doi.org/10.1103/physrevd.89.011301
38 https://doi.org/10.1103/physrevd.89.093018
39 https://doi.org/10.1103/physrevd.90.093003
40 https://doi.org/10.1103/physrevd.90.093006
41 https://doi.org/10.1103/revmodphys.84.515
42 https://doi.org/10.1142/s021773231103725x
43 schema:datePublished 2015-05
44 schema:datePublishedReg 2015-05-01
45 schema:description We explore a possibility to measure the CP-violating phase δ using multimegaton scale ice or water Cherenkov detectors with low, (0.2-1) GeV, energy threshold assuming that the neutrino mass hierarchy is identified. We elaborate the relevant theoretical and phenomenological aspects of this possibility. The distributions of the νμ (track) and νe (cascade) events in the neutrino energy and zenith angle (Eν − θz ) plane have been computed for different values of δ. We study properties and distinguishability of the distributions before and after smearing over the neutrino energy and zenith angle. The CP-violation effects are not washed out by smearing, and furthermore, the sensitivity to δ increases with decrease of the energy threshold. The νe events contribute to the CP-sensitivity as much as the νμ events. While sensitivity of PINGU to δ is low, we find that future possible upgrade, Super-PINGU, with few megaton effective volume at (0.5-1) GeV and e.g. after 4 years of exposure will be able to disentangle values of δ = π/2, π, 3π/2 from δ = 0 with “distinguishability” (∼ significance in σ’s) Sσtot = (3 − 8), (6 − 14), (3 − 8) correspondingly. Here the intervals of Sσot are due to various uncertainties of detection of the low energy events, especially the flavor identification, systematics, etc. Super-PINGU can be used simultaneously for the proton decay searches.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N58134df03c734586b13eba437b532f9d
50 N882771c6c92a457e92321e763cc88d57
51 sg:journal.1052482
52 schema:name Super-PINGU for measurement of the leptonic CP-phase with atmospheric neutrinos
53 schema:pagination 139
54 schema:productId N9e624206b1134093aeab075ed32f68d9
55 Nb88ecd67326e4e04925ad4e84e0ced52
56 Nc5ded0e6bffc4ac3bc7cf5bbed8eb390
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023016455
58 https://doi.org/10.1007/jhep05(2015)139
59 schema:sdDatePublished 2019-04-11T13:08
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Ncf7c2ad1d4d84dffb024dec99d2fbf9f
62 schema:url https://link.springer.com/10.1007%2FJHEP05%282015%29139
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N58134df03c734586b13eba437b532f9d schema:volumeNumber 2015
67 rdf:type schema:PublicationVolume
68 N7c1cbf8821254271bbb5a0b7a850f248 rdf:first sg:person.01242332025.94
69 rdf:rest N857dd3825be24240beadbd07db4328af
70 N857dd3825be24240beadbd07db4328af rdf:first sg:person.0771061465.70
71 rdf:rest rdf:nil
72 N882771c6c92a457e92321e763cc88d57 schema:issueNumber 5
73 rdf:type schema:PublicationIssue
74 N9e624206b1134093aeab075ed32f68d9 schema:name doi
75 schema:value 10.1007/jhep05(2015)139
76 rdf:type schema:PropertyValue
77 Nb88ecd67326e4e04925ad4e84e0ced52 schema:name dimensions_id
78 schema:value pub.1023016455
79 rdf:type schema:PropertyValue
80 Nc5ded0e6bffc4ac3bc7cf5bbed8eb390 schema:name readcube_id
81 schema:value 6da7cf2ffbce4753e1b94c519b2c195a64c91351baa38d56b30b503b78531f30
82 rdf:type schema:PropertyValue
83 Ncf7c2ad1d4d84dffb024dec99d2fbf9f schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
86 schema:name Chemical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Chemistry (incl. Structural)
90 rdf:type schema:DefinedTerm
91 sg:journal.1052482 schema:issn 1029-8479
92 1126-6708
93 schema:name Journal of High Energy Physics
94 rdf:type schema:Periodical
95 sg:person.01242332025.94 schema:affiliation https://www.grid.ac/institutes/grid.412988.e
96 schema:familyName Razzaque
97 schema:givenName Soebur
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242332025.94
99 rdf:type schema:Person
100 sg:person.0771061465.70 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
101 schema:familyName Smirnov
102 schema:givenName A.Yu.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771061465.70
104 rdf:type schema:Person
105 sg:pub.10.1007/jhep02(2013)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032438139
106 https://doi.org/10.1007/jhep02(2013)082
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/jhep04(2013)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042220894
109 https://doi.org/10.1007/jhep04(2013)008
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/jhep05(2014)094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014580162
112 https://doi.org/10.1007/jhep05(2014)094
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/jhep05(2014)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005083717
115 https://doi.org/10.1007/jhep05(2014)109
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/jhep06(2014)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047329921
118 https://doi.org/10.1007/jhep06(2014)150
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/jhep09(2013)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043902798
121 https://doi.org/10.1007/jhep09(2013)089
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/jhep09(2014)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032949889
124 https://doi.org/10.1007/jhep09(2014)024
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/jhep11(2014)052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044594723
127 https://doi.org/10.1007/jhep11(2014)052
128 rdf:type schema:CreativeWork
129 sg:pub.10.1088/1126-6708/2006/01/053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016906656
130 https://doi.org/10.1088/1126-6708/2006/01/053
131 rdf:type schema:CreativeWork
132 sg:pub.10.1088/1126-6708/2007/05/077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033998416
133 https://doi.org/10.1088/1126-6708/2007/05/077
134 rdf:type schema:CreativeWork
135 sg:pub.10.1088/1126-6708/2008/06/072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032744852
136 https://doi.org/10.1088/1126-6708/2008/06/072
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0031-9201(81)90046-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034496796
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.astropartphys.2014.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041997671
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.nuclphysb.2003.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024715831
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.nuclphysb.2014.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041020444
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.nuclphysb.2014.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010061140
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.nuclphysbps.2013.04.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011197074
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physletb.2004.08.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004673148
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.physletb.2006.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052540639
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.physletb.2012.12.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027590828
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ppnp.2007.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033364208
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0370-2693(02)01907-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003630210
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.4883450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003186295
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevc.86.035501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027982342
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevd.52.4985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013542483
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevd.65.073023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001152812
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevd.66.073005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007410330
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevd.68.037301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040714111
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevd.70.033010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042418291
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevd.78.093003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039367511
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevd.87.053006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021754253
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevd.87.113007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041163754
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevd.88.013013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025456381
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevd.89.011301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035993200
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevd.89.093018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022738445
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevd.90.093003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046631319
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevd.90.093006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017138724
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/revmodphys.84.515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018558356
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1142/s021773231103725x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062915574
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.412988.e schema:alternateName University of Johannesburg
195 schema:name Department of Physics, University of Johannesburg, PO Box 524, 2006, Auckland Park, South Africa
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
198 schema:name International Centre for Theoretical Physics,, Strada Costiera 11, I-34100, Trieste, Italy
199 Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117, Heidelberg, Germany
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...