A fake split-supersymmetry model for the 126 GeV Higgs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05

AUTHORS

Karim Benakli, Luc Darmé, Mark D. Goodsell, Pietro Slavich

ABSTRACT

We consider a scenario where supersymmetry is broken at a high energy scale, out of reach of the LHC, but leaves a few fermionic states at the TeV scale. The particle content of the low-energy effective theory is similar to that of Split Supersymmetry. However, the gauginos and higgsinos are replaced by fermions carrying the same quantum numbers but having different couplings, which we call fake gauginos and fake higgsinos. We study the prediction for the light-Higgs mass in this Fake Split-SUSY Model (FSSM). We find that, in contrast to Split or High-Scale Supersymmetry, a 126 GeV Higgs boson is easily obtained even for arbitrarily high values of the supersymmetry scale MS . For MS ≳ 108 GeV, the Higgs mass is almost independent of the supersymmetry scale and the stop mixing parameter, while the observed value is achieved for tan β between 1.3 and 1.8 depending on the gluino mass. More... »

PAGES

113

References to SciGraph publications

  • 2013-12. Investigating the near-criticality of the Higgs boson in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-07-06. The MSSM with heavy scalars in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07. Searches for long-lived charged particles in pp collisions at =7 and 8 TeV in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-06-28. Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03. Search for heavy stable charged particles in pp collisions at in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08. Higgs mass and vacuum stability in the Standard Model at NNLO in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep05(2014)113

    DOI

    http://dx.doi.org/10.1007/jhep05(2014)113

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037673443


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France", 
                "CNRS, UMR 7589, LPTHE, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benakli", 
            "givenName": "Karim", 
            "id": "sg:person.014733257113.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733257113.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France", 
                "CNRS, UMR 7589, LPTHE, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Darm\u00e9", 
            "givenName": "Luc", 
            "id": "sg:person.016666673013.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666673013.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France", 
                "CNRS, UMR 7589, LPTHE, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goodsell", 
            "givenName": "Mark D.", 
            "id": "sg:person.014237335747.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237335747.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Sorbonne Universit\u00e9s, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France", 
                "CNRS, UMR 7589, LPTHE, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Slavich", 
            "givenName": "Pietro", 
            "id": "sg:person.014244415575.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244415575.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2007/07/016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000741196", 
              "https://doi.org/10.1088/1126-6708/2007/07/016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.104002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001394923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.104002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001394923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001839670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90474-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003311403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90474-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003311403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2011)024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004309125", 
              "https://doi.org/10.1007/jhep03(2011)024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2013.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007502511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2010.06.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009745692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2014.02.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014070453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2006.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014617686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2004.12.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016987873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.095001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017417645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.095001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017417645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021591103", 
              "https://doi.org/10.1088/1126-6708/2005/06/073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(82)90271-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022170152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(82)90271-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022170152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(86)90096-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024093395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(86)90096-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024093395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2009.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026816837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2005.03.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027456738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2006.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027651626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029606791", 
              "https://doi.org/10.1007/jhep07(2013)122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2012.01.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029923199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.055005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037928348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.055005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037928348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039369863", 
              "https://doi.org/10.1007/jhep08(2012)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2013)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041890757", 
              "https://doi.org/10.1007/jhep12(2013)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2013)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041890757", 
              "https://doi.org/10.1007/jhep12(2013)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00404-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045437329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2004.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046279958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.075011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047469754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.72.075011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047469754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.095002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048303214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.095002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048303214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2009/08/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049802707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2009/08/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049802707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00705-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051329877"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05", 
        "datePublishedReg": "2014-05-01", 
        "description": "We consider a scenario where supersymmetry is broken at a high energy scale, out of reach of the LHC, but leaves a few fermionic states at the TeV scale. The particle content of the low-energy effective theory is similar to that of Split Supersymmetry. However, the gauginos and higgsinos are replaced by fermions carrying the same quantum numbers but having different couplings, which we call fake gauginos and fake higgsinos. We study the prediction for the light-Higgs mass in this Fake Split-SUSY Model (FSSM). We find that, in contrast to Split or High-Scale Supersymmetry, a 126 GeV Higgs boson is easily obtained even for arbitrarily high values of the supersymmetry scale MS . For MS \u2273 108 GeV, the Higgs mass is almost independent of the supersymmetry scale and the stop mixing parameter, while the observed value is achieved for tan \u03b2 between 1.3 and 1.8 depending on the gluino mass.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep05(2014)113", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "name": "A fake split-supersymmetry model for the 126 GeV Higgs", 
        "pagination": "113", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b376d76885cc20ac97c06590bf4de7f801eb9816397c7093a34492211cc498e5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep05(2014)113"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037673443"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep05(2014)113", 
          "https://app.dimensions.ai/details/publication/pub.1037673443"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP05%282014%29113"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2014)113'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2014)113'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2014)113'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2014)113'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep05(2014)113 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N0d57545e34884d05adeab15792686a5b
    4 schema:citation sg:pub.10.1007/jhep03(2011)024
    5 sg:pub.10.1007/jhep07(2013)122
    6 sg:pub.10.1007/jhep08(2012)098
    7 sg:pub.10.1007/jhep12(2013)089
    8 sg:pub.10.1088/1126-6708/2005/06/073
    9 sg:pub.10.1088/1126-6708/2007/07/016
    10 https://doi.org/10.1016/0370-2693(78)90474-4
    11 https://doi.org/10.1016/0550-3213(82)90271-1
    12 https://doi.org/10.1016/0550-3213(86)90096-9
    13 https://doi.org/10.1016/j.cpc.2013.12.002
    14 https://doi.org/10.1016/j.cpc.2014.02.018
    15 https://doi.org/10.1016/j.nuclphysb.2004.08.001
    16 https://doi.org/10.1016/j.nuclphysb.2004.12.026
    17 https://doi.org/10.1016/j.nuclphysb.2005.03.025
    18 https://doi.org/10.1016/j.nuclphysb.2005.08.011
    19 https://doi.org/10.1016/j.nuclphysb.2006.03.012
    20 https://doi.org/10.1016/j.nuclphysb.2009.03.002
    21 https://doi.org/10.1016/j.nuclphysb.2010.06.018
    22 https://doi.org/10.1016/j.nuclphysb.2012.01.001
    23 https://doi.org/10.1016/j.physletb.2006.01.010
    24 https://doi.org/10.1016/s0550-3213(97)00404-5
    25 https://doi.org/10.1016/s0550-3213(98)00705-6
    26 https://doi.org/10.1088/1475-7516/2009/08/027
    27 https://doi.org/10.1103/physrevd.60.104002
    28 https://doi.org/10.1103/physrevd.72.075011
    29 https://doi.org/10.1103/physrevd.73.095001
    30 https://doi.org/10.1103/physrevd.86.095002
    31 https://doi.org/10.1103/physrevd.89.055005
    32 schema:datePublished 2014-05
    33 schema:datePublishedReg 2014-05-01
    34 schema:description We consider a scenario where supersymmetry is broken at a high energy scale, out of reach of the LHC, but leaves a few fermionic states at the TeV scale. The particle content of the low-energy effective theory is similar to that of Split Supersymmetry. However, the gauginos and higgsinos are replaced by fermions carrying the same quantum numbers but having different couplings, which we call fake gauginos and fake higgsinos. We study the prediction for the light-Higgs mass in this Fake Split-SUSY Model (FSSM). We find that, in contrast to Split or High-Scale Supersymmetry, a 126 GeV Higgs boson is easily obtained even for arbitrarily high values of the supersymmetry scale MS . For MS ≳ 108 GeV, the Higgs mass is almost independent of the supersymmetry scale and the stop mixing parameter, while the observed value is achieved for tan β between 1.3 and 1.8 depending on the gluino mass.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree true
    38 schema:isPartOf N82e6a78eb8c44faa9b8db18f2059641b
    39 Nadb163158c014d43904883e4cb2d5df6
    40 sg:journal.1052482
    41 schema:name A fake split-supersymmetry model for the 126 GeV Higgs
    42 schema:pagination 113
    43 schema:productId N20eefd6e40974af7838e05427874dc86
    44 N332bf88c2d4c4e8387efa8bb76aa9fc6
    45 N84c5953ae55047f394c4bda6b193fe7a
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037673443
    47 https://doi.org/10.1007/jhep05(2014)113
    48 schema:sdDatePublished 2019-04-11T13:09
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N847a2870dd784bdbaf87f2a4e745a4db
    51 schema:url https://link.springer.com/10.1007%2FJHEP05%282014%29113
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N0d57545e34884d05adeab15792686a5b rdf:first sg:person.014733257113.90
    56 rdf:rest Nd3fda71356544515be10c5b24cc4943d
    57 N20eefd6e40974af7838e05427874dc86 schema:name dimensions_id
    58 schema:value pub.1037673443
    59 rdf:type schema:PropertyValue
    60 N2ba1f509a2ac46ac951e624eac39a9d9 rdf:first sg:person.014237335747.23
    61 rdf:rest Na58be1bfe8c4495f9b2ef2702bd0cc2f
    62 N332bf88c2d4c4e8387efa8bb76aa9fc6 schema:name doi
    63 schema:value 10.1007/jhep05(2014)113
    64 rdf:type schema:PropertyValue
    65 N82e6a78eb8c44faa9b8db18f2059641b schema:volumeNumber 2014
    66 rdf:type schema:PublicationVolume
    67 N847a2870dd784bdbaf87f2a4e745a4db schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N84c5953ae55047f394c4bda6b193fe7a schema:name readcube_id
    70 schema:value b376d76885cc20ac97c06590bf4de7f801eb9816397c7093a34492211cc498e5
    71 rdf:type schema:PropertyValue
    72 Na58be1bfe8c4495f9b2ef2702bd0cc2f rdf:first sg:person.014244415575.11
    73 rdf:rest rdf:nil
    74 Nadb163158c014d43904883e4cb2d5df6 schema:issueNumber 5
    75 rdf:type schema:PublicationIssue
    76 Nd3fda71356544515be10c5b24cc4943d rdf:first sg:person.016666673013.35
    77 rdf:rest N2ba1f509a2ac46ac951e624eac39a9d9
    78 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Physical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Other Physical Sciences
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1052482 schema:issn 1029-8479
    85 1126-6708
    86 schema:name Journal of High Energy Physics
    87 rdf:type schema:Periodical
    88 sg:person.014237335747.23 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    89 schema:familyName Goodsell
    90 schema:givenName Mark D.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237335747.23
    92 rdf:type schema:Person
    93 sg:person.014244415575.11 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    94 schema:familyName Slavich
    95 schema:givenName Pietro
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014244415575.11
    97 rdf:type schema:Person
    98 sg:person.014733257113.90 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    99 schema:familyName Benakli
    100 schema:givenName Karim
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733257113.90
    102 rdf:type schema:Person
    103 sg:person.016666673013.35 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    104 schema:familyName Darmé
    105 schema:givenName Luc
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666673013.35
    107 rdf:type schema:Person
    108 sg:pub.10.1007/jhep03(2011)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004309125
    109 https://doi.org/10.1007/jhep03(2011)024
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/jhep07(2013)122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029606791
    112 https://doi.org/10.1007/jhep07(2013)122
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep08(2012)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039369863
    115 https://doi.org/10.1007/jhep08(2012)098
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep12(2013)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041890757
    118 https://doi.org/10.1007/jhep12(2013)089
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1088/1126-6708/2005/06/073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021591103
    121 https://doi.org/10.1088/1126-6708/2005/06/073
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1088/1126-6708/2007/07/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000741196
    124 https://doi.org/10.1088/1126-6708/2007/07/016
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0370-2693(78)90474-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003311403
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0550-3213(82)90271-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022170152
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0550-3213(86)90096-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024093395
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.cpc.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007502511
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.cpc.2014.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014070453
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.nuclphysb.2004.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046279958
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.nuclphysb.2004.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016987873
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.nuclphysb.2005.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027456738
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.nuclphysb.2005.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001839670
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.nuclphysb.2006.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014617686
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.nuclphysb.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026816837
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.nuclphysb.2010.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009745692
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.nuclphysb.2012.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029923199
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.physletb.2006.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027651626
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/s0550-3213(97)00404-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045437329
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/s0550-3213(98)00705-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051329877
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1088/1475-7516/2009/08/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049802707
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevd.60.104002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001394923
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevd.72.075011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047469754
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevd.73.095001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017417645
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevd.86.095002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048303214
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevd.89.055005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037928348
    169 rdf:type schema:CreativeWork
    170 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    171 schema:name CNRS, UMR 7589, LPTHE, F-75005, Paris, France
    172 Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...