String theory origin of bipartite SCFTs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05

AUTHORS

Jonathan J. Heckman, Cumrun Vafa, Dan Xie, Masahito Yamazaki

ABSTRACT

We provide a string theory embedding for = 1 superconformal field theories defined by bipartite graphs inscribed on a disk. We realize these theories by exploiting the close connection with related = 2 generalized (Ak−1, An−1) Argyres-Douglas theories. The = 1 theory is obtained from spacetime filling D5-branes wrapped on an algebraic curve and NS5-branes wrapped on special Lagrangians of which intersect along the BPS flow lines of the corresponding = 2 Argyres-Douglas theory. Dualities of the = 1 field theory follow from geometric deformations of the brane configuration which leave the UV boundary conditions fixed. In particular we show how to recover the classification of IR fixed points from cells of the totally non-negative Grassmannian . Additionally, we present evidence that in the 3D theory obtained from dimensional reduction on a circle, VEVs of line operators given by D3-branes wrapped over faces of the bipartite graph specify a coordinate system for . More... »

PAGES

148

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep05(2013)148

DOI

http://dx.doi.org/10.1007/jhep05(2013)148

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040933098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heckman", 
        "givenName": "Jonathan J.", 
        "id": "sg:person.013340640304.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013340640304.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vafa", 
        "givenName": "Cumrun", 
        "id": "sg:person.014523005000.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Dan", 
        "id": "sg:person.014441531117.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazaki", 
        "givenName": "Masahito", 
        "id": "sg:person.012735326423.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735326423.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-2693(95)00676-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005702050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061897", 
          "https://doi.org/10.1088/1126-6708/2006/01/128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006061897", 
          "https://doi.org/10.1088/1126-6708/2006/01/128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-8176-4467-9_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007707229", 
          "https://doi.org/10.1007/0-8176-4467-9_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.161601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013121670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.161601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013121670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/11/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017852871", 
          "https://doi.org/10.1088/1126-6708/2003/11/013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024885036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024885036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030718669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(03)00459-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030718669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.200810536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030730837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1013034620426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035493644", 
          "https://doi.org/10.1023/a:1013034620426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2012)036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038701666", 
          "https://doi.org/10.1007/jhep09(2012)036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.091602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042061717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.091602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042061717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042410190", 
          "https://doi.org/10.1088/1126-6708/2006/01/096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/01/096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042410190", 
          "https://doi.org/10.1088/1126-6708/2006/01/096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2012)147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043250781", 
          "https://doi.org/10.1007/jhep05(2012)147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0024611505015571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044829946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0024611505015571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044829946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2003.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044880884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0836-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046921720", 
          "https://doi.org/10.1007/s00220-009-0836-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0836-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046921720", 
          "https://doi.org/10.1007/s00220-009-0836-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-009-0836-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046921720", 
          "https://doi.org/10.1007/s00220-009-0836-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217751x07036877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062924997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2008.v12.n3.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457223"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "We provide a string theory embedding for = 1 superconformal field theories defined by bipartite graphs inscribed on a disk. We realize these theories by exploiting the close connection with related = 2 generalized (Ak\u22121, An\u22121) Argyres-Douglas theories. The = 1 theory is obtained from spacetime filling D5-branes wrapped on an algebraic curve and NS5-branes wrapped on special Lagrangians of which intersect along the BPS flow lines of the corresponding = 2 Argyres-Douglas theory. Dualities of the = 1 field theory follow from geometric deformations of the brane configuration which leave the UV boundary conditions fixed. In particular we show how to recover the classification of IR fixed points from cells of the totally non-negative Grassmannian . Additionally, we present evidence that in the 3D theory obtained from dimensional reduction on a circle, VEVs of line operators given by D3-branes wrapped over faces of the bipartite graph specify a coordinate system for .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep05(2013)148", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "name": "String theory origin of bipartite SCFTs", 
    "pagination": "148", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c2fdd69ed7d752c1d5b58ab1831a128eb41df6746004b79b29d5ac6a8e80d48c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep05(2013)148"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040933098"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep05(2013)148", 
      "https://app.dimensions.ai/details/publication/pub.1040933098"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FJHEP05%282013%29148"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)148'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)148'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)148'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)148'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep05(2013)148 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9bc44b56ffd64bb7ad47ada796a55c5e
4 schema:citation sg:pub.10.1007/0-8176-4467-9_16
5 sg:pub.10.1007/jhep05(2012)147
6 sg:pub.10.1007/jhep09(2012)036
7 sg:pub.10.1007/s00220-009-0836-y
8 sg:pub.10.1023/a:1013034620426
9 sg:pub.10.1088/1126-6708/2003/11/013
10 sg:pub.10.1088/1126-6708/2006/01/096
11 sg:pub.10.1088/1126-6708/2006/01/128
12 https://doi.org/10.1002/prop.200810536
13 https://doi.org/10.1016/0370-2693(95)00676-c
14 https://doi.org/10.1016/j.nuclphysb.2003.10.033
15 https://doi.org/10.1016/s0550-3213(03)00459-0
16 https://doi.org/10.1103/physrevlett.102.161601
17 https://doi.org/10.1103/physrevlett.109.091602
18 https://doi.org/10.1103/physrevlett.77.3296
19 https://doi.org/10.1112/s0024611505015571
20 https://doi.org/10.1142/s0217751x07036877
21 https://doi.org/10.4310/atmp.2008.v12.n3.a2
22 schema:datePublished 2013-05
23 schema:datePublishedReg 2013-05-01
24 schema:description We provide a string theory embedding for = 1 superconformal field theories defined by bipartite graphs inscribed on a disk. We realize these theories by exploiting the close connection with related = 2 generalized (Ak−1, An−1) Argyres-Douglas theories. The = 1 theory is obtained from spacetime filling D5-branes wrapped on an algebraic curve and NS5-branes wrapped on special Lagrangians of which intersect along the BPS flow lines of the corresponding = 2 Argyres-Douglas theory. Dualities of the = 1 field theory follow from geometric deformations of the brane configuration which leave the UV boundary conditions fixed. In particular we show how to recover the classification of IR fixed points from cells of the totally non-negative Grassmannian . Additionally, we present evidence that in the 3D theory obtained from dimensional reduction on a circle, VEVs of line operators given by D3-branes wrapped over faces of the bipartite graph specify a coordinate system for .
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N3c56bc49d0ed46a6bc3c84c80dea97cd
29 N7eb7b2e7e7ee41b3b5e8dcd05c72ca38
30 sg:journal.1052482
31 schema:name String theory origin of bipartite SCFTs
32 schema:pagination 148
33 schema:productId N0ac074a06b6246e59c164dfe4b1707e5
34 N198c6583db364df78d0147cbdf6bb1c0
35 N54d515f8c1a246c5834797735486b02c
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040933098
37 https://doi.org/10.1007/jhep05(2013)148
38 schema:sdDatePublished 2019-04-10T15:52
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N530daeaab9be4eafb148d0139d6dbc34
41 schema:url http://link.springer.com/10.1007%2FJHEP05%282013%29148
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0ac074a06b6246e59c164dfe4b1707e5 schema:name doi
46 schema:value 10.1007/jhep05(2013)148
47 rdf:type schema:PropertyValue
48 N1769a979e0ad4238bfc4ab644b29d72f rdf:first sg:person.014441531117.02
49 rdf:rest Nd52ed816cca943d98e6768139e6dd675
50 N198c6583db364df78d0147cbdf6bb1c0 schema:name dimensions_id
51 schema:value pub.1040933098
52 rdf:type schema:PropertyValue
53 N1d6f64e5f78d4182aea50caba89aff2b rdf:first sg:person.014523005000.99
54 rdf:rest N1769a979e0ad4238bfc4ab644b29d72f
55 N3c56bc49d0ed46a6bc3c84c80dea97cd schema:issueNumber 5
56 rdf:type schema:PublicationIssue
57 N530daeaab9be4eafb148d0139d6dbc34 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N54d515f8c1a246c5834797735486b02c schema:name readcube_id
60 schema:value c2fdd69ed7d752c1d5b58ab1831a128eb41df6746004b79b29d5ac6a8e80d48c
61 rdf:type schema:PropertyValue
62 N7eb7b2e7e7ee41b3b5e8dcd05c72ca38 schema:volumeNumber 2013
63 rdf:type schema:PublicationVolume
64 N9bc44b56ffd64bb7ad47ada796a55c5e rdf:first sg:person.013340640304.57
65 rdf:rest N1d6f64e5f78d4182aea50caba89aff2b
66 Nd52ed816cca943d98e6768139e6dd675 rdf:first sg:person.012735326423.30
67 rdf:rest rdf:nil
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:journal.1052482 schema:issn 1029-8479
75 1126-6708
76 schema:name Journal of High Energy Physics
77 rdf:type schema:Periodical
78 sg:person.012735326423.30 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
79 schema:familyName Yamazaki
80 schema:givenName Masahito
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735326423.30
82 rdf:type schema:Person
83 sg:person.013340640304.57 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
84 schema:familyName Heckman
85 schema:givenName Jonathan J.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013340640304.57
87 rdf:type schema:Person
88 sg:person.014441531117.02 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
89 schema:familyName Xie
90 schema:givenName Dan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02
92 rdf:type schema:Person
93 sg:person.014523005000.99 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
94 schema:familyName Vafa
95 schema:givenName Cumrun
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99
97 rdf:type schema:Person
98 sg:pub.10.1007/0-8176-4467-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007707229
99 https://doi.org/10.1007/0-8176-4467-9_16
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/jhep05(2012)147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043250781
102 https://doi.org/10.1007/jhep05(2012)147
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/jhep09(2012)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038701666
105 https://doi.org/10.1007/jhep09(2012)036
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00220-009-0836-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046921720
108 https://doi.org/10.1007/s00220-009-0836-y
109 rdf:type schema:CreativeWork
110 sg:pub.10.1023/a:1013034620426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035493644
111 https://doi.org/10.1023/a:1013034620426
112 rdf:type schema:CreativeWork
113 sg:pub.10.1088/1126-6708/2003/11/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017852871
114 https://doi.org/10.1088/1126-6708/2003/11/013
115 rdf:type schema:CreativeWork
116 sg:pub.10.1088/1126-6708/2006/01/096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042410190
117 https://doi.org/10.1088/1126-6708/2006/01/096
118 rdf:type schema:CreativeWork
119 sg:pub.10.1088/1126-6708/2006/01/128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006061897
120 https://doi.org/10.1088/1126-6708/2006/01/128
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/prop.200810536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030730837
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0370-2693(95)00676-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1005702050
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.nuclphysb.2003.10.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044880884
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0550-3213(03)00459-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030718669
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.102.161601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013121670
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.109.091602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042061717
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.77.3296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024885036
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1112/s0024611505015571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044829946
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1142/s0217751x07036877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062924997
139 rdf:type schema:CreativeWork
140 https://doi.org/10.4310/atmp.2008.v12.n3.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457223
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
143 schema:name Department of Physics, Princeton University, 08544, Princeton, NJ, U.S.A
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
146 schema:name Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
149 schema:name School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...