On three dimensional quiver gauge theories and integrability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-27

AUTHORS

Davide Gaiotto, Peter Koroteev

ABSTRACT

In this work we compare different descriptions of the space of vacua of certain three dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} superconformal field theories, compactified on a circle and mass-deformed to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} in a canonical way. The original \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} theories are known to admit two distinct mirror descriptions as linear quiver gauge theories, and many more descriptions which involve the compactification on a segment of four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} super Yang-Mills theory. Each description gives a distinct presentation of the moduli space of vacua. Our main result is to establish the precise dictionary between these presentations. We also study the relationship between this gauge theory problem and integrable systems. The space of vacua in the linear quiver gauge theory description is related by Nekrasov-Shatashvili duality to the eigenvalues of quantum integrable spin chain Hamiltonians. The space of vacua in the four-dimensional gauge theory description is related to the solution of certain integrable classical many-body problems. Thus we obtain numerous dualities between these integrable models. More... »

PAGES

126

References to SciGraph publications

  • 1988-03. Action-angle maps and scattering theory for some finite-dimensional integrable systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1987-06. Complete integrability of relativistic Calogero-Moser systems and elliptic function identities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-11-23. Spectral Duality Between Heisenberg Chain and Gaudin Model in LETTERS IN MATHEMATICAL PHYSICS
  • 2012-04-03. Line operators on and quantization of the Hitchin moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-29. Exact results for ’t Hooft loops in Gauge theories on S4 in JOURNAL OF HIGH ENERGY PHYSICS
  • 1988-04. Quantum groups in JOURNAL OF MATHEMATICAL SCIENCES
  • 1993-12. On classification ofN=2 supersymmetric theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-22. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-03-24. Notes on SUSY gauge theories on three-sphere in JOURNAL OF HIGH ENERGY PHYSICS
  • 1994-12. Gaudin model, Bethe Ansatz and critical level in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-05-03. Supersymmetry enhancement by monopole operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-03. SUSY gauge theories on squashed three-spheres in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03-14. Spectral duality in integrable systems from AGT conjecture in JETP LETTERS
  • 2012-10-18. An E7 surprise in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982-10. Some algebraic structures connected with the Yang—Baxter equation in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 2010-03-17. Exact results for Wilson loops in superconformal Chern-Simons theories with matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-02. Unitary Representations of Uq(??}(2,ℝ)),¶the Modular Double and the Multiparticle q-Deformed¶Toda Chain in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-10-13. Poisson-Lie Interpretation of Trigonometric Ruijsenaars Duality in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1931-03. Zur Theorie der Metalle in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2010-10-06. Nonperturbative tests of three-dimensional dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-09-12. Seiberg-Witten theories on ellipsoids in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-02-18. Indices for superconformal field theories in 3, 5 and 6 dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-07-17. Duality in integrable systems and gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1986. Field Theory, Quantum Gravity and Strings, Proceedings of a Seminar Series Held at DAPHE, Observatoire de Meudon, and LPTHE, Université Pierre et Marie Curie, Paris, Between October 1984 and October 1985 in NONE
  • 2010-01-22. Liouville Correlation Functions from Four-Dimensional Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • 2011-04-04. Index for three dimensional superconformal field theories with general R-charge assignments in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-02-13. Supersymmetric Boundary Conditions in Super Yang-Mills Theory in JOURNAL OF STATISTICAL PHYSICS
  • 1928-09. Zur Theorie des Ferromagnetismus in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2011-06-07. The virtue of defects in 4D gauge theories and 2D CFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-06. Superconformal indices of three-dimensional theories related by mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 1996-10. Holomorphic bundles and many-body systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-10-17. BPS states in omega background and integrability in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep05(2013)126

    DOI

    http://dx.doi.org/10.1007/jhep05(2013)126

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043871977


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaiotto", 
            "givenName": "Davide", 
            "id": "sg:person.010362457326.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362457326.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koroteev", 
            "givenName": "Peter", 
            "id": "sg:person.011504353136.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504353136.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02096804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020609627", 
              "https://doi.org/10.1007/bf02096804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015999099", 
              "https://doi.org/10.1007/jhep06(2011)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1140-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001606282", 
              "https://doi.org/10.1007/s00220-010-1140-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01328601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026775032", 
              "https://doi.org/10.1007/bf01328601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036339845", 
              "https://doi.org/10.1007/jhep05(2012)141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1485-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029100231", 
              "https://doi.org/10.1007/s00220-012-1485-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001823396", 
              "https://doi.org/10.1007/s002200100592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-009-9687-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023816735", 
              "https://doi.org/10.1007/s10955-009-9687-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364013010062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022176742", 
              "https://doi.org/10.1134/s0021364013010062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030625031", 
              "https://doi.org/10.1007/bf02099624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007221034", 
              "https://doi.org/10.1007/jhep10(2012)129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/02/064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045155881", 
              "https://doi.org/10.1088/1126-6708/2008/02/064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2010)013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018065582", 
              "https://doi.org/10.1007/jhep10(2010)013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-012-0595-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039800637", 
              "https://doi.org/10.1007/s11005-012-0595-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/07/028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020039202", 
              "https://doi.org/10.1088/1126-6708/2000/07/028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01077848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039916345", 
              "https://doi.org/10.1007/bf01077848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052358077", 
              "https://doi.org/10.1007/jhep03(2010)089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046870432", 
              "https://doi.org/10.1007/jhep05(2011)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-16452-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108499287", 
              "https://doi.org/10.1007/3-540-16452-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2011)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010940528", 
              "https://doi.org/10.1007/jhep03(2011)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032000985", 
              "https://doi.org/10.1007/bf02099300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035892733", 
              "https://doi.org/10.1007/bf01238855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01247086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030891740", 
              "https://doi.org/10.1007/bf01247086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2011)007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027488820", 
              "https://doi.org/10.1007/jhep04(2011)007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033726360", 
              "https://doi.org/10.1007/jhep06(2011)025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2012)033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010716408", 
              "https://doi.org/10.1007/jhep09(2012)033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2012)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033447502", 
              "https://doi.org/10.1007/jhep04(2012)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01341708", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029387957", 
              "https://doi.org/10.1007/bf01341708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003742519", 
              "https://doi.org/10.1007/jhep05(2011)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01207363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005326555", 
              "https://doi.org/10.1007/bf01207363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031341443", 
              "https://doi.org/10.1007/jhep10(2012)116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0369-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882223", 
              "https://doi.org/10.1007/s11005-010-0369-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-05-27", 
        "datePublishedReg": "2013-05-27", 
        "description": "In this work we compare different descriptions of the space of vacua of certain three dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N}=4 $\\end{document} superconformal field theories, compactified on a circle and mass-deformed to \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N}=2 $\\end{document} in a canonical way. The original \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N}=4 $\\end{document} theories are known to admit two distinct mirror descriptions as linear quiver gauge theories, and many more descriptions which involve the compactification on a segment of four-dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N}=4 $\\end{document} super Yang-Mills theory. Each description gives a distinct presentation of the moduli space of vacua. Our main result is to establish the precise dictionary between these presentations. We also study the relationship between this gauge theory problem and integrable systems. The space of vacua in the linear quiver gauge theory description is related by Nekrasov-Shatashvili duality to the eigenvalues of quantum integrable spin chain Hamiltonians. The space of vacua in the four-dimensional gauge theory description is related to the solution of certain integrable classical many-body problems. Thus we obtain numerous dualities between these integrable models.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep05(2013)126", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "keywords": [
          "space of vacua", 
          "gauge theory description", 
          "theory description", 
          "integrable spin chain Hamiltonian", 
          "superconformal field theories", 
          "spin chain Hamiltonian", 
          "dimensional quiver gauge theories", 
          "super Yang-Mills theory", 
          "Yang-Mills theory", 
          "quiver gauge theories", 
          "field theory", 
          "mirror description", 
          "integrable systems", 
          "chain Hamiltonian", 
          "integrable models", 
          "moduli space", 
          "theory problems", 
          "canonical way", 
          "precise dictionary", 
          "gauge theory", 
          "body problem", 
          "theory", 
          "duality", 
          "space", 
          "main results", 
          "different descriptions", 
          "integrability", 
          "description", 
          "vacuum", 
          "compactification", 
          "eigenvalues", 
          "Hamiltonian", 
          "problem", 
          "solution", 
          "model", 
          "circle", 
          "system", 
          "work", 
          "results", 
          "way", 
          "dictionary", 
          "segments", 
          "relationship", 
          "presentation", 
          "more descriptions", 
          "distinct presentations"
        ], 
        "name": "On three dimensional quiver gauge theories and integrability", 
        "pagination": "126", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043871977"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep05(2013)126"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep05(2013)126", 
          "https://app.dimensions.ai/details/publication/pub.1043871977"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_609.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep05(2013)126"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)126'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)126'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)126'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)126'


     

    This table displays all metadata directly associated to this object as RDF triples.

    246 TRIPLES      21 PREDICATES      104 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep05(2013)126 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0105
    4 schema:author Nfd276563c80a4ae6bcd20b343e2ef666
    5 schema:citation sg:pub.10.1007/3-540-16452-9
    6 sg:pub.10.1007/bf01077848
    7 sg:pub.10.1007/bf01207363
    8 sg:pub.10.1007/bf01238855
    9 sg:pub.10.1007/bf01247086
    10 sg:pub.10.1007/bf01328601
    11 sg:pub.10.1007/bf01341708
    12 sg:pub.10.1007/bf02096804
    13 sg:pub.10.1007/bf02099300
    14 sg:pub.10.1007/bf02099624
    15 sg:pub.10.1007/jhep03(2010)089
    16 sg:pub.10.1007/jhep03(2011)127
    17 sg:pub.10.1007/jhep04(2011)007
    18 sg:pub.10.1007/jhep04(2012)010
    19 sg:pub.10.1007/jhep05(2011)014
    20 sg:pub.10.1007/jhep05(2011)015
    21 sg:pub.10.1007/jhep05(2012)141
    22 sg:pub.10.1007/jhep06(2011)008
    23 sg:pub.10.1007/jhep06(2011)025
    24 sg:pub.10.1007/jhep09(2012)033
    25 sg:pub.10.1007/jhep10(2010)013
    26 sg:pub.10.1007/jhep10(2012)116
    27 sg:pub.10.1007/jhep10(2012)129
    28 sg:pub.10.1007/s00220-010-1140-6
    29 sg:pub.10.1007/s00220-012-1485-0
    30 sg:pub.10.1007/s002200100592
    31 sg:pub.10.1007/s10955-009-9687-3
    32 sg:pub.10.1007/s11005-010-0369-5
    33 sg:pub.10.1007/s11005-012-0595-0
    34 sg:pub.10.1088/1126-6708/2000/07/028
    35 sg:pub.10.1088/1126-6708/2002/12/044
    36 sg:pub.10.1088/1126-6708/2008/02/064
    37 sg:pub.10.1134/s0021364013010062
    38 schema:datePublished 2013-05-27
    39 schema:datePublishedReg 2013-05-27
    40 schema:description In this work we compare different descriptions of the space of vacua of certain three dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} superconformal field theories, compactified on a circle and mass-deformed to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} in a canonical way. The original \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} theories are known to admit two distinct mirror descriptions as linear quiver gauge theories, and many more descriptions which involve the compactification on a segment of four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=4 $\end{document} super Yang-Mills theory. Each description gives a distinct presentation of the moduli space of vacua. Our main result is to establish the precise dictionary between these presentations. We also study the relationship between this gauge theory problem and integrable systems. The space of vacua in the linear quiver gauge theory description is related by Nekrasov-Shatashvili duality to the eigenvalues of quantum integrable spin chain Hamiltonians. The space of vacua in the four-dimensional gauge theory description is related to the solution of certain integrable classical many-body problems. Thus we obtain numerous dualities between these integrable models.
    41 schema:genre article
    42 schema:isAccessibleForFree true
    43 schema:isPartOf Nb8649700ba80428f88140801e84faaf7
    44 Nd59e23eedc1a4305b4c11f29babea8d6
    45 sg:journal.1052482
    46 schema:keywords Hamiltonian
    47 Yang-Mills theory
    48 body problem
    49 canonical way
    50 chain Hamiltonian
    51 circle
    52 compactification
    53 description
    54 dictionary
    55 different descriptions
    56 dimensional quiver gauge theories
    57 distinct presentations
    58 duality
    59 eigenvalues
    60 field theory
    61 gauge theory
    62 gauge theory description
    63 integrability
    64 integrable models
    65 integrable spin chain Hamiltonian
    66 integrable systems
    67 main results
    68 mirror description
    69 model
    70 moduli space
    71 more descriptions
    72 precise dictionary
    73 presentation
    74 problem
    75 quiver gauge theories
    76 relationship
    77 results
    78 segments
    79 solution
    80 space
    81 space of vacua
    82 spin chain Hamiltonian
    83 super Yang-Mills theory
    84 superconformal field theories
    85 system
    86 theory
    87 theory description
    88 theory problems
    89 vacuum
    90 way
    91 work
    92 schema:name On three dimensional quiver gauge theories and integrability
    93 schema:pagination 126
    94 schema:productId N3db12bc9c6a74478b96be156c7c4c98f
    95 Nc1c08d95d70040e195a5401a02ea832c
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043871977
    97 https://doi.org/10.1007/jhep05(2013)126
    98 schema:sdDatePublished 2022-12-01T06:31
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher N4b5c5fd683e84acea2c7e5f35b3cdb42
    101 schema:url https://doi.org/10.1007/jhep05(2013)126
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N15ee277ce0884004a77e3bd79487bf22 rdf:first sg:person.011504353136.21
    106 rdf:rest rdf:nil
    107 N3db12bc9c6a74478b96be156c7c4c98f schema:name dimensions_id
    108 schema:value pub.1043871977
    109 rdf:type schema:PropertyValue
    110 N4b5c5fd683e84acea2c7e5f35b3cdb42 schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 Nb8649700ba80428f88140801e84faaf7 schema:issueNumber 5
    113 rdf:type schema:PublicationIssue
    114 Nc1c08d95d70040e195a5401a02ea832c schema:name doi
    115 schema:value 10.1007/jhep05(2013)126
    116 rdf:type schema:PropertyValue
    117 Nd59e23eedc1a4305b4c11f29babea8d6 schema:volumeNumber 2013
    118 rdf:type schema:PublicationVolume
    119 Nfd276563c80a4ae6bcd20b343e2ef666 rdf:first sg:person.010362457326.20
    120 rdf:rest N15ee277ce0884004a77e3bd79487bf22
    121 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Mathematical Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Pure Mathematics
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Mathematical Physics
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1052482 schema:issn 1029-8479
    131 1126-6708
    132 schema:name Journal of High Energy Physics
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.010362457326.20 schema:affiliation grid-institutes:grid.420198.6
    136 schema:familyName Gaiotto
    137 schema:givenName Davide
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010362457326.20
    139 rdf:type schema:Person
    140 sg:person.011504353136.21 schema:affiliation grid-institutes:grid.420198.6
    141 schema:familyName Koroteev
    142 schema:givenName Peter
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504353136.21
    144 rdf:type schema:Person
    145 sg:pub.10.1007/3-540-16452-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108499287
    146 https://doi.org/10.1007/3-540-16452-9
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf01077848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039916345
    149 https://doi.org/10.1007/bf01077848
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf01207363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005326555
    152 https://doi.org/10.1007/bf01207363
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf01238855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035892733
    155 https://doi.org/10.1007/bf01238855
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf01247086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030891740
    158 https://doi.org/10.1007/bf01247086
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf01328601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026775032
    161 https://doi.org/10.1007/bf01328601
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/bf01341708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029387957
    164 https://doi.org/10.1007/bf01341708
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bf02096804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020609627
    167 https://doi.org/10.1007/bf02096804
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/bf02099300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032000985
    170 https://doi.org/10.1007/bf02099300
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bf02099624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030625031
    173 https://doi.org/10.1007/bf02099624
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep03(2010)089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052358077
    176 https://doi.org/10.1007/jhep03(2010)089
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep03(2011)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010940528
    179 https://doi.org/10.1007/jhep03(2011)127
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep04(2011)007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027488820
    182 https://doi.org/10.1007/jhep04(2011)007
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep04(2012)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033447502
    185 https://doi.org/10.1007/jhep04(2012)010
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep05(2011)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742519
    188 https://doi.org/10.1007/jhep05(2011)014
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
    191 https://doi.org/10.1007/jhep05(2011)015
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep05(2012)141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036339845
    194 https://doi.org/10.1007/jhep05(2012)141
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep06(2011)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015999099
    197 https://doi.org/10.1007/jhep06(2011)008
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep06(2011)025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033726360
    200 https://doi.org/10.1007/jhep06(2011)025
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep09(2012)033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010716408
    203 https://doi.org/10.1007/jhep09(2012)033
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep10(2010)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018065582
    206 https://doi.org/10.1007/jhep10(2010)013
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep10(2012)116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031341443
    209 https://doi.org/10.1007/jhep10(2012)116
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep10(2012)129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007221034
    212 https://doi.org/10.1007/jhep10(2012)129
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00220-010-1140-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001606282
    215 https://doi.org/10.1007/s00220-010-1140-6
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00220-012-1485-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100231
    218 https://doi.org/10.1007/s00220-012-1485-0
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s002200100592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001823396
    221 https://doi.org/10.1007/s002200100592
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s10955-009-9687-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023816735
    224 https://doi.org/10.1007/s10955-009-9687-3
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
    227 https://doi.org/10.1007/s11005-010-0369-5
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s11005-012-0595-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039800637
    230 https://doi.org/10.1007/s11005-012-0595-0
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1088/1126-6708/2000/07/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020039202
    233 https://doi.org/10.1088/1126-6708/2000/07/028
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    236 https://doi.org/10.1088/1126-6708/2002/12/044
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1088/1126-6708/2008/02/064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045155881
    239 https://doi.org/10.1088/1126-6708/2008/02/064
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1134/s0021364013010062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022176742
    242 https://doi.org/10.1134/s0021364013010062
    243 rdf:type schema:CreativeWork
    244 grid-institutes:grid.420198.6 schema:alternateName Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada
    245 schema:name Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada
    246 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...