Time evolution of entanglement entropy from black hole interiors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05

AUTHORS

Thomas Hartman, Juan Maldacena

ABSTRACT

We compute the time-dependent entanglement entropy of a CFT which starts in relatively simple initial states. The initial states are the thermofield double for thermal states, dual to eternal black holes, and a particular pure state, dual to a black hole formed by gravitational collapse. The entanglement entropy grows linearly in time. This linear growth is directly related to the growth of the black hole interior measured along “nice” spatial slices. These nice slices probe the spacelike direction in the interior, at a fixed special value of the interior time. In the case of a two-dimensional CFT, we match the bulk and boundary computations of the entanglement entropy. We briefly discuss the long time behavior of various correlators, computed via classical geodesics or surfaces, and point out that their exponential decay comes about for similar reasons. We also present the time evolution of the wavefunction in the tensor network description. More... »

PAGES

14

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep05(2013)014

DOI

http://dx.doi.org/10.1007/jhep05(2013)014

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051990733


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartman", 
        "givenName": "Thomas", 
        "id": "sg:person.013432475311.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432475311.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maldacena", 
        "givenName": "Juan", 
        "id": "sg:person.0770412736.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770412736.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep07(2012)093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000901623", 
          "https://doi.org/10.1007/jhep07(2012)093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/1998/12/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000933877", 
          "https://doi.org/10.1088/1126-6708/1998/12/005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/4/045017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000970360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002439178", 
          "https://doi.org/10.1007/jhep11(2010)054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002439178", 
          "https://doi.org/10.1007/jhep11(2010)054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.124053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003519911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.124053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003519911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90402-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008260231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90402-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008260231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2011)082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008716172", 
          "https://doi.org/10.1007/jhep12(2011)082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2013)146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008967522", 
          "https://doi.org/10.1007/jhep03(2013)146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2012)102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009370232", 
          "https://doi.org/10.1007/jhep01(2012)102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2007/07/062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015808787", 
          "https://doi.org/10.1088/1126-6708/2007/07/062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/asl.2009.1029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016451095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/04/044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018707388", 
          "https://doi.org/10.1088/1126-6708/2006/04/044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.066002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019312542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.59.066002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019312542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.026010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020453124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.026010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020453124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(94)91007-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(94)91007-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-011-0237-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022635674", 
          "https://doi.org/10.1007/s10955-011-0237-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2013)038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022774326", 
          "https://doi.org/10.1007/jhep02(2013)038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2013)062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023406972", 
          "https://doi.org/10.1007/jhep02(2013)062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/50/504005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024677401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(96)00323-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026310975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(76)90178-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028063233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(76)90178-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028063233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2003/04/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028201206", 
          "https://doi.org/10.1088/1126-6708/2003/04/021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2010.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029857131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.126010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032679656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.126010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032679656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037064857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037064857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2007/06/p06008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037105258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2012)103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038289918", 
          "https://doi.org/10.1007/jhep01(2012)103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2004/02/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039776934", 
          "https://doi.org/10.1088/1126-6708/2004/02/014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040181402", 
          "https://doi.org/10.1007/jhep11(2010)149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2010)149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040181402", 
          "https://doi.org/10.1007/jhep11(2010)149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2005/04/p04010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044950208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2008/03/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046107673", 
          "https://doi.org/10.1088/1126-6708/2008/03/006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.191601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046441262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.191601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046441262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.110501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049615149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.110501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049615149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.86.065007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051347288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.86.065007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051347288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/50/504008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051371240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/50/504008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051371240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2004/06/p06002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051859914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.105017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052437321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.105017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052437321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053240501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053240501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.064005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060706853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.77.064005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060706853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805632"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "We compute the time-dependent entanglement entropy of a CFT which starts in relatively simple initial states. The initial states are the thermofield double for thermal states, dual to eternal black holes, and a particular pure state, dual to a black hole formed by gravitational collapse. The entanglement entropy grows linearly in time. This linear growth is directly related to the growth of the black hole interior measured along \u201cnice\u201d spatial slices. These nice slices probe the spacelike direction in the interior, at a fixed special value of the interior time. In the case of a two-dimensional CFT, we match the bulk and boundary computations of the entanglement entropy. We briefly discuss the long time behavior of various correlators, computed via classical geodesics or surfaces, and point out that their exponential decay comes about for similar reasons. We also present the time evolution of the wavefunction in the tensor network description.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep05(2013)014", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2013"
      }
    ], 
    "name": "Time evolution of entanglement entropy from black hole interiors", 
    "pagination": "14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f7a6f8d34464b67494d3c064aa50a1e9586103190a552ed4663c0706e75037b9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep05(2013)014"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051990733"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep05(2013)014", 
      "https://app.dimensions.ai/details/publication/pub.1051990733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FJHEP05%282013%29014"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)014'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)014'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)014'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep05(2013)014'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep05(2013)014 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N0fac4428f7264568b7e37bc5326adaad
4 schema:citation sg:pub.10.1007/jhep01(2012)102
5 sg:pub.10.1007/jhep01(2012)103
6 sg:pub.10.1007/jhep02(2013)038
7 sg:pub.10.1007/jhep02(2013)062
8 sg:pub.10.1007/jhep03(2013)146
9 sg:pub.10.1007/jhep07(2012)093
10 sg:pub.10.1007/jhep11(2010)054
11 sg:pub.10.1007/jhep11(2010)149
12 sg:pub.10.1007/jhep12(2011)082
13 sg:pub.10.1007/s10955-011-0237-4
14 sg:pub.10.1088/1126-6708/1998/12/005
15 sg:pub.10.1088/1126-6708/2003/04/021
16 sg:pub.10.1088/1126-6708/2004/02/014
17 sg:pub.10.1088/1126-6708/2006/04/044
18 sg:pub.10.1088/1126-6708/2007/07/062
19 sg:pub.10.1088/1126-6708/2008/03/006
20 https://doi.org/10.1016/0370-2693(94)91007-3
21 https://doi.org/10.1016/0375-9601(76)90178-x
22 https://doi.org/10.1016/0550-3213(94)90402-2
23 https://doi.org/10.1016/0550-3213(96)00323-9
24 https://doi.org/10.1016/j.aop.2010.09.012
25 https://doi.org/10.1088/1367-2630/13/4/045017
26 https://doi.org/10.1088/1742-5468/2004/06/p06002
27 https://doi.org/10.1088/1742-5468/2005/04/p04010
28 https://doi.org/10.1088/1742-5468/2007/06/p06008
29 https://doi.org/10.1088/1751-8113/42/50/504005
30 https://doi.org/10.1088/1751-8113/42/50/504008
31 https://doi.org/10.1103/physrevd.59.066002
32 https://doi.org/10.1103/physrevd.77.064005
33 https://doi.org/10.1103/physrevd.82.126010
34 https://doi.org/10.1103/physrevd.84.026010
35 https://doi.org/10.1103/physrevd.84.105017
36 https://doi.org/10.1103/physrevd.84.124053
37 https://doi.org/10.1103/physrevd.86.065007
38 https://doi.org/10.1103/physrevlett.101.110501
39 https://doi.org/10.1103/physrevlett.106.191601
40 https://doi.org/10.1103/physrevlett.69.1849
41 https://doi.org/10.1103/physrevlett.69.2863
42 https://doi.org/10.1103/physrevlett.75.3537
43 https://doi.org/10.1103/physrevlett.96.181602
44 https://doi.org/10.1166/asl.2009.1029
45 schema:datePublished 2013-05
46 schema:datePublishedReg 2013-05-01
47 schema:description We compute the time-dependent entanglement entropy of a CFT which starts in relatively simple initial states. The initial states are the thermofield double for thermal states, dual to eternal black holes, and a particular pure state, dual to a black hole formed by gravitational collapse. The entanglement entropy grows linearly in time. This linear growth is directly related to the growth of the black hole interior measured along “nice” spatial slices. These nice slices probe the spacelike direction in the interior, at a fixed special value of the interior time. In the case of a two-dimensional CFT, we match the bulk and boundary computations of the entanglement entropy. We briefly discuss the long time behavior of various correlators, computed via classical geodesics or surfaces, and point out that their exponential decay comes about for similar reasons. We also present the time evolution of the wavefunction in the tensor network description.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N46bcb1b8caa74b9b90a9afdc17d72edf
52 N9555e8b6be784744aa20ca4ad8e2f9ae
53 sg:journal.1052482
54 schema:name Time evolution of entanglement entropy from black hole interiors
55 schema:pagination 14
56 schema:productId N1e5def79fa9c4074b287831bb28304c4
57 N4faeda8bf6d049d3865b2ba80cc1b157
58 N8638cb13d07f4d2ba3a162e9d265808e
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051990733
60 https://doi.org/10.1007/jhep05(2013)014
61 schema:sdDatePublished 2019-04-10T16:43
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N2129712988ee4a98be84f3881b76752a
64 schema:url http://link.springer.com/10.1007%2FJHEP05%282013%29014
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0fac4428f7264568b7e37bc5326adaad rdf:first sg:person.013432475311.00
69 rdf:rest N7f65617ee9144cfcac9e785a1ff373f9
70 N1e5def79fa9c4074b287831bb28304c4 schema:name doi
71 schema:value 10.1007/jhep05(2013)014
72 rdf:type schema:PropertyValue
73 N2129712988ee4a98be84f3881b76752a schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N46bcb1b8caa74b9b90a9afdc17d72edf schema:issueNumber 5
76 rdf:type schema:PublicationIssue
77 N4faeda8bf6d049d3865b2ba80cc1b157 schema:name readcube_id
78 schema:value f7a6f8d34464b67494d3c064aa50a1e9586103190a552ed4663c0706e75037b9
79 rdf:type schema:PropertyValue
80 N7f65617ee9144cfcac9e785a1ff373f9 rdf:first sg:person.0770412736.65
81 rdf:rest rdf:nil
82 N8638cb13d07f4d2ba3a162e9d265808e schema:name dimensions_id
83 schema:value pub.1051990733
84 rdf:type schema:PropertyValue
85 N9555e8b6be784744aa20ca4ad8e2f9ae schema:volumeNumber 2013
86 rdf:type schema:PublicationVolume
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
91 schema:name Astronomical and Space Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1052482 schema:issn 1029-8479
94 1126-6708
95 schema:name Journal of High Energy Physics
96 rdf:type schema:Periodical
97 sg:person.013432475311.00 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
98 schema:familyName Hartman
99 schema:givenName Thomas
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432475311.00
101 rdf:type schema:Person
102 sg:person.0770412736.65 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
103 schema:familyName Maldacena
104 schema:givenName Juan
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770412736.65
106 rdf:type schema:Person
107 sg:pub.10.1007/jhep01(2012)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009370232
108 https://doi.org/10.1007/jhep01(2012)102
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/jhep01(2012)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038289918
111 https://doi.org/10.1007/jhep01(2012)103
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/jhep02(2013)038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022774326
114 https://doi.org/10.1007/jhep02(2013)038
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/jhep02(2013)062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023406972
117 https://doi.org/10.1007/jhep02(2013)062
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/jhep03(2013)146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008967522
120 https://doi.org/10.1007/jhep03(2013)146
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/jhep07(2012)093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000901623
123 https://doi.org/10.1007/jhep07(2012)093
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/jhep11(2010)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002439178
126 https://doi.org/10.1007/jhep11(2010)054
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/jhep11(2010)149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040181402
129 https://doi.org/10.1007/jhep11(2010)149
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/jhep12(2011)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008716172
132 https://doi.org/10.1007/jhep12(2011)082
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10955-011-0237-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022635674
135 https://doi.org/10.1007/s10955-011-0237-4
136 rdf:type schema:CreativeWork
137 sg:pub.10.1088/1126-6708/1998/12/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000933877
138 https://doi.org/10.1088/1126-6708/1998/12/005
139 rdf:type schema:CreativeWork
140 sg:pub.10.1088/1126-6708/2003/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028201206
141 https://doi.org/10.1088/1126-6708/2003/04/021
142 rdf:type schema:CreativeWork
143 sg:pub.10.1088/1126-6708/2004/02/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039776934
144 https://doi.org/10.1088/1126-6708/2004/02/014
145 rdf:type schema:CreativeWork
146 sg:pub.10.1088/1126-6708/2006/04/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018707388
147 https://doi.org/10.1088/1126-6708/2006/04/044
148 rdf:type schema:CreativeWork
149 sg:pub.10.1088/1126-6708/2007/07/062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015808787
150 https://doi.org/10.1088/1126-6708/2007/07/062
151 rdf:type schema:CreativeWork
152 sg:pub.10.1088/1126-6708/2008/03/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046107673
153 https://doi.org/10.1088/1126-6708/2008/03/006
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/0370-2693(94)91007-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022025261
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0375-9601(76)90178-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028063233
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0550-3213(94)90402-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008260231
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0550-3213(96)00323-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026310975
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.aop.2010.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029857131
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/1367-2630/13/4/045017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000970360
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/1742-5468/2004/06/p06002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051859914
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/1742-5468/2005/04/p04010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044950208
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/1742-5468/2007/06/p06008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037105258
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1088/1751-8113/42/50/504005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024677401
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/1751-8113/42/50/504008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051371240
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevd.59.066002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019312542
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevd.77.064005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060706853
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevd.82.126010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032679656
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevd.84.026010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020453124
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevd.84.105017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052437321
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevd.84.124053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003519911
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevd.86.065007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051347288
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.101.110501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049615149
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.106.191601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046441262
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.69.1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053240501
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.69.2863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805632
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.75.3537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037064857
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.96.181602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002119197
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1166/asl.2009.1029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016451095
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
206 schema:name School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A.
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...