Branes and the Kraft-Procesi transition: classical case View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04-23

AUTHORS

Santiago Cabrera, Amihay Hanany

ABSTRACT

Moduli spaces of a large set of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} effective gauge theories are known to be closures of nilpotent orbits. This set of theories has recently acquired a special status, due to Namikawa’s theorem. As a consequence of this theorem, closures of nilpotent orbits are the simplest non-trivial moduli spaces that can be found in three dimensional theories with eight supercharges. In the early 80’s mathematicians Hanspeter Kraft and Claudio Procesi characterized an inclusion relation between nilpotent orbit closures of the same classical Lie algebra. We recently [1] showed a physical realization of their work in terms of the motion of D3-branes on the Type IIB superstring embedding of the effective gauge theories. This analysis is restricted to A-type Lie algebras. The present note expands our previous discussion to the remaining classical cases: orthogonal and symplectic algebras. In order to do so we introduce O3-planes in the superstring description. We also find a brane realization for the mathematical map between two partitions of the same integer number known as collapse. Another result is that basic Kraft-Procesi transitions turn out to be described by the moduli space of orthosymplectic quivers with varying boundary conditions. More... »

PAGES

127

References to SciGraph publications

  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980. Simple Singularities and Simple Algebraic Groups in NONE
  • 2000-06-07. On orientifolds, discrete torsion, branes and M theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-13. Extremal solutions of the S3 model and nilpotent orbits of G2(2) in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-14. Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2017-10-04. Non-connected gauge groups and the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02-06. Algebraic properties of the monopole formula in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982. Classes Unipotentes et Sous-groupes de Borel in NONE
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-07-07. Issues on orientifolds: on the brane construction of gauge theories with SO(2n) global symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 1979-10. Closures of conjugacy classes of matrices are normal in INVENTIONES MATHEMATICAE
  • 2002. The Adjoint Representation and the Adjoint Action in ALGEBRAIC QUOTIENTS. TORUS ACTIONS AND COHOMOLOGY. THE ADJOINT REPRESENTATION AND THE ADJOINT ACTION
  • 1980-10. Minimal singularities inGLn in INVENTIONES MATHEMATICAE
  • 2000-11-22. Mirror symmetry by O3-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-02. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-07-15. 6D RG flows and nilpotent hierarchies in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-07-27. Nahm's equations, N = 1* domain walls, and D-strings in AdS5 × S5 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02-07. Hilbert Series and Mixed Branches of T [SU(N )] theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-21. Counting the massive vacua of N=1∗ super Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-07-14. Baryons and branes in anti de Sitter space in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2018)127

    DOI

    http://dx.doi.org/10.1007/jhep04(2018)127

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103637912


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cabrera", 
            "givenName": "Santiago", 
            "id": "sg:person.015574474365.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2000/06/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026086430", 
              "https://doi.org/10.1088/1126-6708/2000/06/013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083765372", 
              "https://doi.org/10.1007/jhep02(2017)037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/07/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017981757", 
              "https://doi.org/10.1088/1126-6708/1998/07/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041675977", 
              "https://doi.org/10.1007/jhep08(2016)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022851903", 
              "https://doi.org/10.1007/jhep08(2010)072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020208042", 
              "https://doi.org/10.1007/jhep08(2015)106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092691109", 
              "https://doi.org/10.1007/jhep11(2017)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698145", 
              "https://doi.org/10.1007/jhep02(2017)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-05071-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019231156", 
              "https://doi.org/10.1007/978-3-662-05071-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/07/041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035031875", 
              "https://doi.org/10.1088/1126-6708/2001/07/041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/07/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018492151", 
              "https://doi.org/10.1088/1126-6708/1999/07/009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0090294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020531009", 
              "https://doi.org/10.1007/bfb0090294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/11/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024992501", 
              "https://doi.org/10.1088/1126-6708/2000/11/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01394257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032332974", 
              "https://doi.org/10.1007/bf01394257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031798386", 
              "https://doi.org/10.1007/jhep07(2016)082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0096302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029540457", 
              "https://doi.org/10.1007/bfb0096302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092100969", 
              "https://doi.org/10.1007/jhep10(2017)033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01389764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050815107", 
              "https://doi.org/10.1007/bf01389764"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04-23", 
        "datePublishedReg": "2018-04-23", 
        "description": "Moduli spaces of a large set of 3dN=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} effective gauge theories are known to be closures of nilpotent orbits. This set of theories has recently acquired a special status, due to Namikawa\u2019s theorem. As a consequence of this theorem, closures of nilpotent orbits are the simplest non-trivial moduli spaces that can be found in three dimensional theories with eight supercharges. In the early 80\u2019s mathematicians Hanspeter Kraft and Claudio Procesi characterized an inclusion relation between nilpotent orbit closures of the same classical Lie algebra. We recently [1] showed a physical realization of their work in terms of the motion of D3-branes on the Type IIB superstring embedding of the effective gauge theories. This analysis is restricted to A-type Lie algebras. The present note expands our previous discussion to the remaining classical cases: orthogonal and symplectic algebras. In order to do so we introduce O3-planes in the superstring description. We also find a brane realization for the mathematical map between two partitions of the same integer number known as collapse. Another result is that basic Kraft-Procesi transitions turn out to be described by the moduli space of orthosymplectic quivers with varying boundary conditions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep04(2018)127", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "keywords": [
          "moduli space", 
          "effective gauge theory", 
          "Kraft-Procesi transitions", 
          "Lie algebra", 
          "nilpotent orbits", 
          "gauge theory", 
          "classical case", 
          "non-trivial moduli space", 
          "classical Lie algebras", 
          "nilpotent orbit closures", 
          "symplectic algebra", 
          "mathematical maps", 
          "dimensional theory", 
          "D3-branes", 
          "brane realization", 
          "algebra", 
          "orbit closures", 
          "physical realization", 
          "theorem", 
          "boundary conditions", 
          "integer number", 
          "inclusion relations", 
          "present note", 
          "theory", 
          "space", 
          "orbit", 
          "Procesi", 
          "supercharges", 
          "quivers", 
          "large set", 
          "brane", 
          "realization", 
          "type IIB", 
          "set", 
          "set of theories", 
          "motion", 
          "transition", 
          "embedding", 
          "previous discussions", 
          "partition", 
          "description", 
          "terms", 
          "cases", 
          "note", 
          "order", 
          "maps", 
          "number", 
          "work", 
          "conditions", 
          "results", 
          "relation", 
          "collapse", 
          "closure", 
          "analysis", 
          "discussion", 
          "consequences", 
          "special status", 
          "IIb", 
          "kraft", 
          "status"
        ], 
        "name": "Branes and the Kraft-Procesi transition: classical case", 
        "pagination": "127", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103637912"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2018)127"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2018)127", 
          "https://app.dimensions.ai/details/publication/pub.1103637912"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_786.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep04(2018)127"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)127'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)127'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)127'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)127'


     

    This table displays all metadata directly associated to this object as RDF triples.

    230 TRIPLES      21 PREDICATES      109 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2018)127 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd622069d8de5409a9b2f6e898090a0cb
    4 schema:citation sg:pub.10.1007/978-3-662-05071-2_3
    5 sg:pub.10.1007/bf01389764
    6 sg:pub.10.1007/bf01394257
    7 sg:pub.10.1007/bf02565876
    8 sg:pub.10.1007/bfb0090294
    9 sg:pub.10.1007/bfb0096302
    10 sg:pub.10.1007/jhep01(2014)005
    11 sg:pub.10.1007/jhep01(2015)150
    12 sg:pub.10.1007/jhep02(2017)023
    13 sg:pub.10.1007/jhep02(2017)037
    14 sg:pub.10.1007/jhep06(2016)130
    15 sg:pub.10.1007/jhep07(2016)082
    16 sg:pub.10.1007/jhep08(2010)072
    17 sg:pub.10.1007/jhep08(2015)106
    18 sg:pub.10.1007/jhep08(2016)016
    19 sg:pub.10.1007/jhep09(2010)063
    20 sg:pub.10.1007/jhep10(2017)033
    21 sg:pub.10.1007/jhep11(2016)175
    22 sg:pub.10.1007/jhep11(2017)079
    23 sg:pub.10.1088/1126-6708/1998/07/006
    24 sg:pub.10.1088/1126-6708/1999/07/009
    25 sg:pub.10.1088/1126-6708/2000/06/013
    26 sg:pub.10.1088/1126-6708/2000/11/033
    27 sg:pub.10.1088/1126-6708/2001/07/041
    28 sg:pub.10.1088/1126-6708/2007/03/090
    29 schema:datePublished 2018-04-23
    30 schema:datePublishedReg 2018-04-23
    31 schema:description Moduli spaces of a large set of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} effective gauge theories are known to be closures of nilpotent orbits. This set of theories has recently acquired a special status, due to Namikawa’s theorem. As a consequence of this theorem, closures of nilpotent orbits are the simplest non-trivial moduli spaces that can be found in three dimensional theories with eight supercharges. In the early 80’s mathematicians Hanspeter Kraft and Claudio Procesi characterized an inclusion relation between nilpotent orbit closures of the same classical Lie algebra. We recently [1] showed a physical realization of their work in terms of the motion of D3-branes on the Type IIB superstring embedding of the effective gauge theories. This analysis is restricted to A-type Lie algebras. The present note expands our previous discussion to the remaining classical cases: orthogonal and symplectic algebras. In order to do so we introduce O3-planes in the superstring description. We also find a brane realization for the mathematical map between two partitions of the same integer number known as collapse. Another result is that basic Kraft-Procesi transitions turn out to be described by the moduli space of orthosymplectic quivers with varying boundary conditions.
    32 schema:genre article
    33 schema:isAccessibleForFree true
    34 schema:isPartOf N505c5d3b5da941ad94add1d038b39d28
    35 Nc6e4ca6d6da94e58b5f066c139ad9a89
    36 sg:journal.1052482
    37 schema:keywords D3-branes
    38 IIb
    39 Kraft-Procesi transitions
    40 Lie algebra
    41 Procesi
    42 algebra
    43 analysis
    44 boundary conditions
    45 brane
    46 brane realization
    47 cases
    48 classical Lie algebras
    49 classical case
    50 closure
    51 collapse
    52 conditions
    53 consequences
    54 description
    55 dimensional theory
    56 discussion
    57 effective gauge theory
    58 embedding
    59 gauge theory
    60 inclusion relations
    61 integer number
    62 kraft
    63 large set
    64 maps
    65 mathematical maps
    66 moduli space
    67 motion
    68 nilpotent orbit closures
    69 nilpotent orbits
    70 non-trivial moduli space
    71 note
    72 number
    73 orbit
    74 orbit closures
    75 order
    76 partition
    77 physical realization
    78 present note
    79 previous discussions
    80 quivers
    81 realization
    82 relation
    83 results
    84 set
    85 set of theories
    86 space
    87 special status
    88 status
    89 supercharges
    90 symplectic algebra
    91 terms
    92 theorem
    93 theory
    94 transition
    95 type IIB
    96 work
    97 schema:name Branes and the Kraft-Procesi transition: classical case
    98 schema:pagination 127
    99 schema:productId N0b06c814254149168189deca38d18ab9
    100 Ndf87a2f4e91e42c4ae833b90c8eae7b2
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    102 https://doi.org/10.1007/jhep04(2018)127
    103 schema:sdDatePublished 2022-10-01T06:45
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher Nc5ef8687487d49f9bfcb7ef0f2276555
    106 schema:url https://doi.org/10.1007/jhep04(2018)127
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N0b06c814254149168189deca38d18ab9 schema:name dimensions_id
    111 schema:value pub.1103637912
    112 rdf:type schema:PropertyValue
    113 N505c5d3b5da941ad94add1d038b39d28 schema:volumeNumber 2018
    114 rdf:type schema:PublicationVolume
    115 N9b6d0e918137484b9e5b3440d1d15a96 rdf:first sg:person.012155553275.80
    116 rdf:rest rdf:nil
    117 Nc5ef8687487d49f9bfcb7ef0f2276555 schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 Nc6e4ca6d6da94e58b5f066c139ad9a89 schema:issueNumber 4
    120 rdf:type schema:PublicationIssue
    121 Nd622069d8de5409a9b2f6e898090a0cb rdf:first sg:person.015574474365.83
    122 rdf:rest N9b6d0e918137484b9e5b3440d1d15a96
    123 Ndf87a2f4e91e42c4ae833b90c8eae7b2 schema:name doi
    124 schema:value 10.1007/jhep04(2018)127
    125 rdf:type schema:PropertyValue
    126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Mathematical Sciences
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Pure Mathematics
    131 rdf:type schema:DefinedTerm
    132 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep04(2018)127
    133 rdf:type schema:MonetaryGrant
    134 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep04(2018)127
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep04(2018)127
    137 rdf:type schema:MonetaryGrant
    138 sg:journal.1052482 schema:issn 1029-8479
    139 1126-6708
    140 schema:name Journal of High Energy Physics
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    144 schema:familyName Hanany
    145 schema:givenName Amihay
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    147 rdf:type schema:Person
    148 sg:person.015574474365.83 schema:affiliation grid-institutes:grid.7445.2
    149 schema:familyName Cabrera
    150 schema:givenName Santiago
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83
    152 rdf:type schema:Person
    153 sg:pub.10.1007/978-3-662-05071-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019231156
    154 https://doi.org/10.1007/978-3-662-05071-2_3
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/bf01389764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050815107
    157 https://doi.org/10.1007/bf01389764
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf01394257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032332974
    160 https://doi.org/10.1007/bf01394257
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    163 https://doi.org/10.1007/bf02565876
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/bfb0090294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531009
    166 https://doi.org/10.1007/bfb0090294
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bfb0096302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029540457
    169 https://doi.org/10.1007/bfb0096302
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    172 https://doi.org/10.1007/jhep01(2014)005
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    175 https://doi.org/10.1007/jhep01(2015)150
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/jhep02(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
    178 https://doi.org/10.1007/jhep02(2017)023
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/jhep02(2017)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083765372
    181 https://doi.org/10.1007/jhep02(2017)037
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    184 https://doi.org/10.1007/jhep06(2016)130
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/jhep07(2016)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798386
    187 https://doi.org/10.1007/jhep07(2016)082
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/jhep08(2010)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022851903
    190 https://doi.org/10.1007/jhep08(2010)072
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/jhep08(2015)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020208042
    193 https://doi.org/10.1007/jhep08(2015)106
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/jhep08(2016)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
    196 https://doi.org/10.1007/jhep08(2016)016
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    199 https://doi.org/10.1007/jhep09(2010)063
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/jhep10(2017)033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092100969
    202 https://doi.org/10.1007/jhep10(2017)033
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    205 https://doi.org/10.1007/jhep11(2016)175
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/jhep11(2017)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
    208 https://doi.org/10.1007/jhep11(2017)079
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1088/1126-6708/1998/07/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017981757
    211 https://doi.org/10.1088/1126-6708/1998/07/006
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1088/1126-6708/1999/07/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018492151
    214 https://doi.org/10.1088/1126-6708/1999/07/009
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1088/1126-6708/2000/06/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026086430
    217 https://doi.org/10.1088/1126-6708/2000/06/013
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1088/1126-6708/2000/11/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024992501
    220 https://doi.org/10.1088/1126-6708/2000/11/033
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1088/1126-6708/2001/07/041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035031875
    223 https://doi.org/10.1088/1126-6708/2001/07/041
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    226 https://doi.org/10.1088/1126-6708/2007/03/090
    227 rdf:type schema:CreativeWork
    228 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    229 schema:name Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    230 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...