Thermoelectric DC conductivities in hyperscaling violating Lifshitz theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04

AUTHORS

Sera Cremonini, Mirjam Cvetič, Ioannis Papadimitriou

ABSTRACT

We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds with a dynamical exponent z and hyperscaling violating parameter θ. We show that the heat current in the dual Lifshitz theory involves the energy flux, which is an irrelevant operator for z > 1. The linearized fluctuations relevant for computing the thermoelectric conductivities turn on a source for this irrelevant operator, leading to several novel and non-trivial aspects in the holographic renormalization procedure and the identification of the physical observables in the dual theory. Moreover, imposing Dirichlet or Neumann boundary conditions on the spatial components of one of the two Maxwell fields present leads to different thermoelectric conductivities. Dirichlet boundary conditions reproduce the thermoelectric DC conductivities obtained from the near horizon analysis of Donos and Gauntlett, while Neumann boundary conditions result in a new set of DC conductivities. We make preliminary analytical estimates for the temperature behavior of the thermoelectric matrix in appropriate regions of parameter space. In particular, at large temperatures we find that the only case which could lead to a linear resistivity ρ ∼ T corresponds to z = 4/3. More... »

PAGES

99

References to SciGraph publications

  • 2015-07. Holographic Hall conductivities from dyonic backgrounds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10. Backreacted DBI magnetotransport with momentum dissipation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-01. Holographic stress tensor for non-relativistic theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04. Phases of planar AdS black holes with axionic charge in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11. Effective holographic theories for low-temperature condensed matter systems in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01. Hamilton-Jacobi renormalization for Lifshitz spacetime in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-04-16. Universal hydrodynamics of non-conformal branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06. Aspects of holography for theories with hyperscaling violation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04. DC conductivities from non-relativistic scaling geometries with momentum dissipation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-11. Thermoelectric DC conductivities from black hole horizons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11. Linear and quadratic in temperature resistivity from holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03. Black hole thermodynamics from a variational principle: asymptotically conical backgrounds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05. Holographic entanglement entropy and Fermi surfaces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01. Lifshitz holography: the whole shebang in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-10. Holographic renormalization for asymptotically Lifshitz spacetimes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02. Intermediate scalings in holographic RG flows and conductivities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-09-06. Metallic AdS/CFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08. Holographic renormalization for irrelevant operators and multi-trace counterterms in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01. Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-04. Holographic models for theories with hyperscaling violation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-03. Two-point functions in a holographic Kondo model in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05. Conformal Lifshitz gravity from holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05. A simple holographic model of momentum relaxation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-04. Quantum critical lines in holographic phases with (un)broken symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04. Holographic Q-lattices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07. Bianchi attractors: a classification of extremal black brane geometries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-04. Towards strange metallic holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01. Holographic Fermi surfaces and entanglement entropy in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2018)099

    DOI

    http://dx.doi.org/10.1007/jhep04(2018)099

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103882836


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lehigh University", 
              "id": "https://www.grid.ac/institutes/grid.259029.5", 
              "name": [
                "Department of Physics, Lehigh University, 16 Memorial Drive East, 18018, Bethlehem, PA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cremonini", 
            "givenName": "Sera", 
            "id": "sg:person.010644540705.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644540705.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Maribor", 
              "id": "https://www.grid.ac/institutes/grid.8647.d", 
              "name": [
                "Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, 19104-6396, Philadelphia, PA, U.S.A.", 
                "Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska ulica 3, SI2000, Maribor, Slovenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cveti\u010d", 
            "givenName": "Mirjam", 
            "id": "sg:person.012222536305.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.249961.1", 
              "name": [
                "School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, 02455, Seoul, Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Papadimitriou", 
            "givenName": "Ioannis", 
            "id": "sg:person.010343070224.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343070224.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep03(2016)086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000440254", 
              "https://doi.org/10.1007/jhep03(2016)086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/28/21/215019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002137187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.081602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002484703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.081602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002484703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2013)053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003729808", 
              "https://doi.org/10.1007/jhep04(2013)053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/04/062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005841875", 
              "https://doi.org/10.1088/1126-6708/2009/04/062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011967409", 
              "https://doi.org/10.1007/jhep08(2011)093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.155126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012755530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.91.155126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012755530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012977536", 
              "https://doi.org/10.1007/jhep11(2010)151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012977536", 
              "https://doi.org/10.1007/jhep11(2010)151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013098244", 
              "https://doi.org/10.1007/jhep01(2015)052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013736873", 
              "https://doi.org/10.1007/jhep06(2012)041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/09/024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014323572", 
              "https://doi.org/10.1088/1126-6708/2007/09/024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2010)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014843080", 
              "https://doi.org/10.1007/jhep04(2010)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2010)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014843080", 
              "https://doi.org/10.1007/jhep04(2010)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2014)081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016733407", 
              "https://doi.org/10.1007/jhep11(2014)081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018891764", 
              "https://doi.org/10.1007/jhep07(2012)193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/30/6/065009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021190699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021603876", 
              "https://doi.org/10.1007/jhep01(2012)058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/30/19/195017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024006482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026715021", 
              "https://doi.org/10.1088/1126-6708/2009/09/009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026715021", 
              "https://doi.org/10.1088/1126-6708/2009/09/009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.035121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032319541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.035121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032319541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.106005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.106005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.75.085020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036219976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.75.085020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036219976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.87.025031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041537723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.87.025031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041537723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041677861", 
              "https://doi.org/10.1007/jhep01(2012)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043474769", 
              "https://doi.org/10.1007/jhep02(2015)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045867629", 
              "https://doi.org/10.1007/jhep05(2014)101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045867629", 
              "https://doi.org/10.1007/jhep05(2014)101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045874765", 
              "https://doi.org/10.1007/jhep05(2012)065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045996898", 
              "https://doi.org/10.1007/jhep07(2015)094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045996898", 
              "https://doi.org/10.1007/jhep07(2015)094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2013)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047654957", 
              "https://doi.org/10.1007/jhep04(2013)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/33/3/033001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047838017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048134311", 
              "https://doi.org/10.1007/jhep01(2012)094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2011)129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049407072", 
              "https://doi.org/10.1007/jhep10(2011)129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050298326", 
              "https://doi.org/10.1007/jhep05(2012)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050550770", 
              "https://doi.org/10.1007/jhep04(2014)040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054508105", 
              "https://doi.org/10.1007/jhep11(2016)128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054508105", 
              "https://doi.org/10.1007/jhep11(2016)128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.045016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060709028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.045016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060709028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.221601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.115.221601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060764531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1189134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1189134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2017)039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084017726", 
              "https://doi.org/10.1007/jhep03(2017)039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084517121", 
              "https://doi.org/10.1007/jhep04(2017)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084517129", 
              "https://doi.org/10.1007/jhep04(2017)009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2017.09.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091973317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092331259", 
              "https://doi.org/10.1007/jhep10(2017)133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x18500288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100905451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.97.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101319695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.97.061901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101319695"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04", 
        "datePublishedReg": "2018-04-01", 
        "description": "We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds with a dynamical exponent z and hyperscaling violating parameter \u03b8. We show that the heat current in the dual Lifshitz theory involves the energy flux, which is an irrelevant operator for z > 1. The linearized fluctuations relevant for computing the thermoelectric conductivities turn on a source for this irrelevant operator, leading to several novel and non-trivial aspects in the holographic renormalization procedure and the identification of the physical observables in the dual theory. Moreover, imposing Dirichlet or Neumann boundary conditions on the spatial components of one of the two Maxwell fields present leads to different thermoelectric conductivities. Dirichlet boundary conditions reproduce the thermoelectric DC conductivities obtained from the near horizon analysis of Donos and Gauntlett, while Neumann boundary conditions result in a new set of DC conductivities. We make preliminary analytical estimates for the temperature behavior of the thermoelectric matrix in appropriate regions of parameter space. In particular, at large temperatures we find that the only case which could lead to a linear resistivity \u03c1 \u223c T corresponds to z = 4/3.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep04(2018)099", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "name": "Thermoelectric DC conductivities in hyperscaling violating Lifshitz theories", 
        "pagination": "99", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "974781272d4961c446d59153c6a6f396fe56d6f1204aae9da97f8f7e1cea0f02"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2018)099"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103882836"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2018)099", 
          "https://app.dimensions.ai/details/publication/pub.1103882836"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000573.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP04%282018%29099"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)099'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)099'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)099'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2018)099'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2018)099 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Necad90da191645be9c66e1d4621f35b5
    4 schema:citation sg:pub.10.1007/jhep01(2012)058
    5 sg:pub.10.1007/jhep01(2012)094
    6 sg:pub.10.1007/jhep01(2012)125
    7 sg:pub.10.1007/jhep01(2015)052
    8 sg:pub.10.1007/jhep02(2015)035
    9 sg:pub.10.1007/jhep03(2016)086
    10 sg:pub.10.1007/jhep03(2017)039
    11 sg:pub.10.1007/jhep04(2010)120
    12 sg:pub.10.1007/jhep04(2013)053
    13 sg:pub.10.1007/jhep04(2013)159
    14 sg:pub.10.1007/jhep04(2014)040
    15 sg:pub.10.1007/jhep04(2017)001
    16 sg:pub.10.1007/jhep04(2017)009
    17 sg:pub.10.1007/jhep05(2012)010
    18 sg:pub.10.1007/jhep05(2012)065
    19 sg:pub.10.1007/jhep05(2014)101
    20 sg:pub.10.1007/jhep06(2012)041
    21 sg:pub.10.1007/jhep07(2012)193
    22 sg:pub.10.1007/jhep07(2015)094
    23 sg:pub.10.1007/jhep08(2011)093
    24 sg:pub.10.1007/jhep10(2011)129
    25 sg:pub.10.1007/jhep10(2017)133
    26 sg:pub.10.1007/jhep11(2010)151
    27 sg:pub.10.1007/jhep11(2014)081
    28 sg:pub.10.1007/jhep11(2016)128
    29 sg:pub.10.1088/1126-6708/2007/09/024
    30 sg:pub.10.1088/1126-6708/2009/04/062
    31 sg:pub.10.1088/1126-6708/2009/09/009
    32 https://doi.org/10.1016/j.nuclphysb.2017.09.016
    33 https://doi.org/10.1088/0264-9381/28/21/215019
    34 https://doi.org/10.1088/0264-9381/30/19/195017
    35 https://doi.org/10.1088/0264-9381/30/6/065009
    36 https://doi.org/10.1088/0264-9381/33/3/033001
    37 https://doi.org/10.1103/physrevb.85.035121
    38 https://doi.org/10.1103/physrevb.91.155126
    39 https://doi.org/10.1103/physrevd.75.085020
    40 https://doi.org/10.1103/physrevd.78.106005
    41 https://doi.org/10.1103/physrevd.87.025031
    42 https://doi.org/10.1103/physrevd.88.045016
    43 https://doi.org/10.1103/physrevd.93.061901
    44 https://doi.org/10.1103/physrevd.97.061901
    45 https://doi.org/10.1103/physrevlett.110.081602
    46 https://doi.org/10.1103/physrevlett.115.221601
    47 https://doi.org/10.1126/science.1189134
    48 https://doi.org/10.1142/s0217751x18500288
    49 schema:datePublished 2018-04
    50 schema:datePublishedReg 2018-04-01
    51 schema:description We analytically compute the thermoelectric conductivities at zero frequency (DC) in the holographic dual of a four dimensional Einstein-Maxwell-Axion-Dilaton theory that admits a class of asymptotically hyperscaling violating Lifshitz backgrounds with a dynamical exponent z and hyperscaling violating parameter θ. We show that the heat current in the dual Lifshitz theory involves the energy flux, which is an irrelevant operator for z > 1. The linearized fluctuations relevant for computing the thermoelectric conductivities turn on a source for this irrelevant operator, leading to several novel and non-trivial aspects in the holographic renormalization procedure and the identification of the physical observables in the dual theory. Moreover, imposing Dirichlet or Neumann boundary conditions on the spatial components of one of the two Maxwell fields present leads to different thermoelectric conductivities. Dirichlet boundary conditions reproduce the thermoelectric DC conductivities obtained from the near horizon analysis of Donos and Gauntlett, while Neumann boundary conditions result in a new set of DC conductivities. We make preliminary analytical estimates for the temperature behavior of the thermoelectric matrix in appropriate regions of parameter space. In particular, at large temperatures we find that the only case which could lead to a linear resistivity ρ ∼ T corresponds to z = 4/3.
    52 schema:genre research_article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree true
    55 schema:isPartOf N19bf59b5d81d43d7980b891b5040ed0d
    56 Nc853d66fe2d04d6e99815604a6645ff2
    57 sg:journal.1052482
    58 schema:name Thermoelectric DC conductivities in hyperscaling violating Lifshitz theories
    59 schema:pagination 99
    60 schema:productId N157d017c37bd42d49b16be5d28e55586
    61 Nb8c927231fea43adb7c3d1a07b5391ed
    62 Nc98ddf17e11b4c5aa06e3090bd64035f
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103882836
    64 https://doi.org/10.1007/jhep04(2018)099
    65 schema:sdDatePublished 2019-04-10T23:35
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher Ndc63e68fb71443e5a16fdb9a338a6e4a
    68 schema:url https://link.springer.com/10.1007%2FJHEP04%282018%29099
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N157d017c37bd42d49b16be5d28e55586 schema:name readcube_id
    73 schema:value 974781272d4961c446d59153c6a6f396fe56d6f1204aae9da97f8f7e1cea0f02
    74 rdf:type schema:PropertyValue
    75 N19bf59b5d81d43d7980b891b5040ed0d schema:volumeNumber 2018
    76 rdf:type schema:PublicationVolume
    77 N546f26a3519e4a85957ee828381690fc rdf:first sg:person.010343070224.18
    78 rdf:rest rdf:nil
    79 Nb8c927231fea43adb7c3d1a07b5391ed schema:name doi
    80 schema:value 10.1007/jhep04(2018)099
    81 rdf:type schema:PropertyValue
    82 Nc853d66fe2d04d6e99815604a6645ff2 schema:issueNumber 4
    83 rdf:type schema:PublicationIssue
    84 Nc98ddf17e11b4c5aa06e3090bd64035f schema:name dimensions_id
    85 schema:value pub.1103882836
    86 rdf:type schema:PropertyValue
    87 Ndc63e68fb71443e5a16fdb9a338a6e4a schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 Necad90da191645be9c66e1d4621f35b5 rdf:first sg:person.010644540705.46
    90 rdf:rest Nf87e6f342c4c4d2aaf53cd672c68310d
    91 Nf87e6f342c4c4d2aaf53cd672c68310d rdf:first sg:person.012222536305.19
    92 rdf:rest N546f26a3519e4a85957ee828381690fc
    93 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Mathematical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Pure Mathematics
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1052482 schema:issn 1029-8479
    100 1126-6708
    101 schema:name Journal of High Energy Physics
    102 rdf:type schema:Periodical
    103 sg:person.010343070224.18 schema:affiliation https://www.grid.ac/institutes/grid.249961.1
    104 schema:familyName Papadimitriou
    105 schema:givenName Ioannis
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343070224.18
    107 rdf:type schema:Person
    108 sg:person.010644540705.46 schema:affiliation https://www.grid.ac/institutes/grid.259029.5
    109 schema:familyName Cremonini
    110 schema:givenName Sera
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644540705.46
    112 rdf:type schema:Person
    113 sg:person.012222536305.19 schema:affiliation https://www.grid.ac/institutes/grid.8647.d
    114 schema:familyName Cvetič
    115 schema:givenName Mirjam
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19
    117 rdf:type schema:Person
    118 sg:pub.10.1007/jhep01(2012)058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021603876
    119 https://doi.org/10.1007/jhep01(2012)058
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/jhep01(2012)094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048134311
    122 https://doi.org/10.1007/jhep01(2012)094
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/jhep01(2012)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041677861
    125 https://doi.org/10.1007/jhep01(2012)125
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/jhep01(2015)052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013098244
    128 https://doi.org/10.1007/jhep01(2015)052
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/jhep02(2015)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043474769
    131 https://doi.org/10.1007/jhep02(2015)035
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/jhep03(2016)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000440254
    134 https://doi.org/10.1007/jhep03(2016)086
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/jhep03(2017)039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017726
    137 https://doi.org/10.1007/jhep03(2017)039
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep04(2010)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014843080
    140 https://doi.org/10.1007/jhep04(2010)120
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/jhep04(2013)053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003729808
    143 https://doi.org/10.1007/jhep04(2013)053
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep04(2013)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047654957
    146 https://doi.org/10.1007/jhep04(2013)159
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep04(2014)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550770
    149 https://doi.org/10.1007/jhep04(2014)040
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep04(2017)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517121
    152 https://doi.org/10.1007/jhep04(2017)001
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep04(2017)009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517129
    155 https://doi.org/10.1007/jhep04(2017)009
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep05(2012)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050298326
    158 https://doi.org/10.1007/jhep05(2012)010
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep05(2012)065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045874765
    161 https://doi.org/10.1007/jhep05(2012)065
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep05(2014)101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045867629
    164 https://doi.org/10.1007/jhep05(2014)101
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep06(2012)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013736873
    167 https://doi.org/10.1007/jhep06(2012)041
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep07(2012)193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018891764
    170 https://doi.org/10.1007/jhep07(2012)193
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep07(2015)094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045996898
    173 https://doi.org/10.1007/jhep07(2015)094
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep08(2011)093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011967409
    176 https://doi.org/10.1007/jhep08(2011)093
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep10(2011)129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049407072
    179 https://doi.org/10.1007/jhep10(2011)129
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep10(2017)133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092331259
    182 https://doi.org/10.1007/jhep10(2017)133
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep11(2010)151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012977536
    185 https://doi.org/10.1007/jhep11(2010)151
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep11(2014)081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016733407
    188 https://doi.org/10.1007/jhep11(2014)081
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep11(2016)128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054508105
    191 https://doi.org/10.1007/jhep11(2016)128
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1088/1126-6708/2007/09/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014323572
    194 https://doi.org/10.1088/1126-6708/2007/09/024
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1088/1126-6708/2009/04/062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005841875
    197 https://doi.org/10.1088/1126-6708/2009/04/062
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1088/1126-6708/2009/09/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026715021
    200 https://doi.org/10.1088/1126-6708/2009/09/009
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.nuclphysb.2017.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091973317
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1088/0264-9381/28/21/215019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002137187
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1088/0264-9381/30/19/195017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024006482
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1088/0264-9381/30/6/065009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021190699
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1088/0264-9381/33/3/033001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047838017
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1103/physrevb.85.035121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032319541
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1103/physrevb.91.155126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012755530
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1103/physrevd.75.085020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036219976
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1103/physrevd.78.106005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182093
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1103/physrevd.87.025031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041537723
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1103/physrevd.88.045016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060709028
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1103/physrevd.93.061901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060712158
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1103/physrevd.97.061901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101319695
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1103/physrevlett.110.081602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002484703
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1103/physrevlett.115.221601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764531
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1126/science.1189134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461764
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1142/s0217751x18500288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100905451
    235 rdf:type schema:CreativeWork
    236 https://www.grid.ac/institutes/grid.249961.1 schema:alternateName Korea Institute for Advanced Study
    237 schema:name School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, 02455, Seoul, Korea
    238 rdf:type schema:Organization
    239 https://www.grid.ac/institutes/grid.259029.5 schema:alternateName Lehigh University
    240 schema:name Department of Physics, Lehigh University, 16 Memorial Drive East, 18018, Bethlehem, PA, U.S.A.
    241 rdf:type schema:Organization
    242 https://www.grid.ac/institutes/grid.8647.d schema:alternateName University of Maribor
    243 schema:name Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska ulica 3, SI2000, Maribor, Slovenia
    244 Department of Physics and Astronomy, University of Pennsylvania, 209 S 33rd St, 19104-6396, Philadelphia, PA, U.S.A.
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...