Origin of Abelian gauge symmetries in heterotic/F-theory duality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04

AUTHORS

Mirjam Cvetič, Antonella Grassi, Denis Klevers, Maximilian Poretschkin, Peng Song

ABSTRACT

We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) × U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) × ℤk structure group and bundles with purely non-Abelian structure groups having a centralizer in E8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)’s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)’s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally. More... »

PAGES

41

References to SciGraph publications

  • 2015-01. F-theory on all toric hypersurface fibrations and its Higgs branches in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-06-13. Loop-corrected compactifications of the heterotic string with line bundles in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-04. Computing brane and flux superpotentials in F-theory compactifications in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04. Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-11. General U(1)×U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure in JOURNAL OF HIGH ENERGY PHYSICS
  • 1997-08. Vector Bundles and F Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-11. On seven-brane dependent instanton prefactors in F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-08. Geometric constraints in dual F-theory and heterotic string compactifications in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-03. Complete intersection fibers in F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-12. F-theory compactifications with multiple U(1)-factors: addendum in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05. The Cremmer-Scherk mechanism in F-theory compactifications on K3 manifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10. F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06. U(n) spectral covers from decomposition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-08-12. Monodromies, fluxes, and compact three-generation F-theory GUTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 1975. Algorithm for determining the type of a singular fiber in an elliptic pencil in MODULAR FUNCTIONS OF ONE VARIABLE IV
  • 2011-08. Tate’s algorithm and F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-04-29. Aspects of the hypermultiplet moduli space in string duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10. Mordell-Weil torsion and the global structure of gauge groups in F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06. F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-07-22. Non-simply-connected gauge groups and rational points on elliptic curves in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03. Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1)×U(1)×U(1) gauge symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-11. Three looks at instantons in F-theory — New insights from anomaly inflow, string junctions and heterotic duality in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2016)041

    DOI

    http://dx.doi.org/10.1007/jhep04(2016)041

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027437555


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Maribor", 
              "id": "https://www.grid.ac/institutes/grid.8647.d", 
              "name": [
                "Department of Physics and Astronomy, University of Pennsylvania, 19104-6396, Philadelphia, PA, U.S.A.", 
                "Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cveti\u010d", 
            "givenName": "Mirjam", 
            "id": "sg:person.012222536305.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Mathematics, University of Pennsylvania, 19104-6396, Philadelphia, PA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grassi", 
            "givenName": "Antonella", 
            "id": "sg:person.07602416227.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602416227.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "European Organization for Nuclear Research", 
              "id": "https://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "Theory Group, Physics Department, CERN, CH-1211, Geneva 23, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klevers", 
            "givenName": "Denis", 
            "id": "sg:person.010406665757.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010406665757.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Physics and Astronomy, University of Pennsylvania, 19104-6396, Philadelphia, PA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Poretschkin", 
            "givenName": "Maximilian", 
            "id": "sg:person.016623656034.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623656034.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Pennsylvania", 
              "id": "https://www.grid.ac/institutes/grid.25879.31", 
              "name": [
                "Department of Physics and Astronomy, University of Pennsylvania, 19104-6396, Philadelphia, PA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Peng", 
            "id": "sg:person.012704174435.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012704174435.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep04(2014)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000212825", 
              "https://doi.org/10.1007/jhep04(2014)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002055338", 
              "https://doi.org/10.1088/1126-6708/2005/06/020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/06/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002055338", 
              "https://doi.org/10.1088/1126-6708/2005/06/020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/07/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002419177", 
              "https://doi.org/10.1088/1126-6708/1998/07/012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003965305", 
              "https://doi.org/10.1007/jhep05(2014)135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003965305", 
              "https://doi.org/10.1007/jhep05(2014)135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2010.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006631592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(96)00172-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009608360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010261260", 
              "https://doi.org/10.1007/jhep10(2012)128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1521-3978(199906)47:6<587::aid-prop587>3.0.co;2-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012140245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014002142", 
              "https://doi.org/10.1007/jhep06(2013)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(96)00369-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014764878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015824654", 
              "https://doi.org/10.1007/jhep01(2015)142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016205402", 
              "https://doi.org/10.1007/jhep11(2015)204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)80029-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017386874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018223641", 
              "https://doi.org/10.1007/s002200050154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019486359", 
              "https://doi.org/10.1007/jhep06(2012)009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/04/019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028356774", 
              "https://doi.org/10.1088/1126-6708/1998/04/019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028959068", 
              "https://doi.org/10.1007/jhep10(2014)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028959068", 
              "https://doi.org/10.1007/jhep10(2014)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(96)00242-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031352207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(96)00410-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034112884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0097582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034457711", 
              "https://doi.org/10.1007/bfb0097582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040057689", 
              "https://doi.org/10.1007/jhep12(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040057689", 
              "https://doi.org/10.1007/jhep12(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2010)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042037362", 
              "https://doi.org/10.1007/jhep04(2010)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2010)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042037362", 
              "https://doi.org/10.1007/jhep04(2010)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0920-5632(96)00025-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043936153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/08/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043993189", 
              "https://doi.org/10.1088/1126-6708/2009/08/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/08/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043993189", 
              "https://doi.org/10.1088/1126-6708/2009/08/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2009.12.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044676146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044890911", 
              "https://doi.org/10.1007/jhep08(2011)094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-7.1.414", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046727914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046852869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2012)004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047864130", 
              "https://doi.org/10.1007/jhep11(2012)004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00516-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048464807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050297831", 
              "https://doi.org/10.1007/jhep03(2014)021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(96)90131-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050972604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(96)90131-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050972604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2011)101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052400525", 
              "https://doi.org/10.1007/jhep11(2011)101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2014)025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053304567", 
              "https://doi.org/10.1007/jhep08(2014)025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2008.07.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053421633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2015)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053447440", 
              "https://doi.org/10.1007/jhep03(2015)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.046005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060709041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.046005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060709041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129167x12500280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062902632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1030132587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064976920"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/ajm.1997.v1.n2.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n6.a4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2001.v5.n1.a4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2010.v14.n5.a3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2013.v17.n4.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/cntp.2012.v6.n1.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072459510"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04", 
        "datePublishedReg": "2016-04-01", 
        "description": "We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) \u00d7 U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) \u00d7 \u2124k structure group and bundles with purely non-Abelian structure groups having a centralizer in E8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)\u2019s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)\u2019s is found by taking into account a St\u00fcckelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep04(2016)041", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "name": "Origin of Abelian gauge symmetries in heterotic/F-theory duality", 
        "pagination": "41", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "82b402ddc778ae758ca1de40589bc26438a1b34834713f5e299c3b37677b225a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2016)041"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027437555"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2016)041", 
          "https://app.dimensions.ai/details/publication/pub.1027437555"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FJHEP04%282016%29041"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2016)041'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2016)041'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2016)041'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2016)041'


     

    This table displays all metadata directly associated to this object as RDF triples.

    257 TRIPLES      21 PREDICATES      73 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2016)041 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne4388df1acef4a13a7d1391132db7044
    4 schema:citation sg:pub.10.1007/bfb0097582
    5 sg:pub.10.1007/jhep01(2015)142
    6 sg:pub.10.1007/jhep03(2014)021
    7 sg:pub.10.1007/jhep03(2015)125
    8 sg:pub.10.1007/jhep04(2010)015
    9 sg:pub.10.1007/jhep04(2014)010
    10 sg:pub.10.1007/jhep05(2014)135
    11 sg:pub.10.1007/jhep06(2012)009
    12 sg:pub.10.1007/jhep06(2013)067
    13 sg:pub.10.1007/jhep08(2011)094
    14 sg:pub.10.1007/jhep08(2014)025
    15 sg:pub.10.1007/jhep10(2012)128
    16 sg:pub.10.1007/jhep10(2014)016
    17 sg:pub.10.1007/jhep11(2011)101
    18 sg:pub.10.1007/jhep11(2012)004
    19 sg:pub.10.1007/jhep11(2015)204
    20 sg:pub.10.1007/jhep12(2013)056
    21 sg:pub.10.1007/s002200050154
    22 sg:pub.10.1088/1126-6708/1998/04/019
    23 sg:pub.10.1088/1126-6708/1998/07/012
    24 sg:pub.10.1088/1126-6708/2005/06/020
    25 sg:pub.10.1088/1126-6708/2009/08/046
    26 https://doi.org/10.1002/(sici)1521-3978(199906)47:6<587::aid-prop587>3.0.co;2-5
    27 https://doi.org/10.1016/0550-3213(96)00172-1
    28 https://doi.org/10.1016/0550-3213(96)00242-8
    29 https://doi.org/10.1016/0550-3213(96)00369-0
    30 https://doi.org/10.1016/0920-5632(96)00025-4
    31 https://doi.org/10.1016/j.nuclphysb.2008.07.031
    32 https://doi.org/10.1016/j.nuclphysb.2009.12.013
    33 https://doi.org/10.1016/j.nuclphysb.2010.06.011
    34 https://doi.org/10.1016/j.nuclphysb.2014.02.006
    35 https://doi.org/10.1016/s0550-3213(96)00410-5
    36 https://doi.org/10.1016/s0550-3213(96)90131-5
    37 https://doi.org/10.1016/s0550-3213(97)00516-6
    38 https://doi.org/10.1016/s0550-3213(97)80029-6
    39 https://doi.org/10.1103/physrevd.88.046005
    40 https://doi.org/10.1112/plms/s3-7.1.414
    41 https://doi.org/10.1142/s0129167x12500280
    42 https://doi.org/10.1307/mmj/1030132587
    43 https://doi.org/10.2307/1970131
    44 https://doi.org/10.4310/ajm.1997.v1.n2.a1
    45 https://doi.org/10.4310/atmp.1998.v2.n6.a4
    46 https://doi.org/10.4310/atmp.2001.v5.n1.a4
    47 https://doi.org/10.4310/atmp.2010.v14.n5.a3
    48 https://doi.org/10.4310/atmp.2013.v17.n4.a2
    49 https://doi.org/10.4310/cntp.2012.v6.n1.a2
    50 schema:datePublished 2016-04
    51 schema:datePublishedReg 2016-04-01
    52 schema:description We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) × U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) × ℤk structure group and bundles with purely non-Abelian structure groups having a centralizer in E8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)’s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)’s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf N12921a5c74a34d06862bfa70404466d6
    57 N5ab6a861a3c54884958eecf091ef07c0
    58 sg:journal.1052482
    59 schema:name Origin of Abelian gauge symmetries in heterotic/F-theory duality
    60 schema:pagination 41
    61 schema:productId N8a6db368fa834bb7b2f4aeee7181c88e
    62 N94805bbae0fc4ae78ee56f35b00d07a7
    63 Nbdc7af43351541598c3eace6ac1423f6
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027437555
    65 https://doi.org/10.1007/jhep04(2016)041
    66 schema:sdDatePublished 2019-04-10T16:42
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Nec437e75073d459d892694c84a65e397
    69 schema:url http://link.springer.com/10.1007%2FJHEP04%282016%29041
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N12921a5c74a34d06862bfa70404466d6 schema:issueNumber 4
    74 rdf:type schema:PublicationIssue
    75 N55060006aca248eabc1e812876fc31ef rdf:first sg:person.012704174435.44
    76 rdf:rest rdf:nil
    77 N5ab6a861a3c54884958eecf091ef07c0 schema:volumeNumber 2016
    78 rdf:type schema:PublicationVolume
    79 N8a6db368fa834bb7b2f4aeee7181c88e schema:name dimensions_id
    80 schema:value pub.1027437555
    81 rdf:type schema:PropertyValue
    82 N94805bbae0fc4ae78ee56f35b00d07a7 schema:name readcube_id
    83 schema:value 82b402ddc778ae758ca1de40589bc26438a1b34834713f5e299c3b37677b225a
    84 rdf:type schema:PropertyValue
    85 Na77c0b8e5f794a60818be36de58049c0 rdf:first sg:person.07602416227.55
    86 rdf:rest Ndd3ddf447aef4bf89962120bdda21da9
    87 Nae1423e691ac4b758d75490720a0dd35 rdf:first sg:person.016623656034.08
    88 rdf:rest N55060006aca248eabc1e812876fc31ef
    89 Nbdc7af43351541598c3eace6ac1423f6 schema:name doi
    90 schema:value 10.1007/jhep04(2016)041
    91 rdf:type schema:PropertyValue
    92 Ndd3ddf447aef4bf89962120bdda21da9 rdf:first sg:person.010406665757.17
    93 rdf:rest Nae1423e691ac4b758d75490720a0dd35
    94 Ne4388df1acef4a13a7d1391132db7044 rdf:first sg:person.012222536305.19
    95 rdf:rest Na77c0b8e5f794a60818be36de58049c0
    96 Nec437e75073d459d892694c84a65e397 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Pure Mathematics
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1052482 schema:issn 1029-8479
    105 1126-6708
    106 schema:name Journal of High Energy Physics
    107 rdf:type schema:Periodical
    108 sg:person.010406665757.17 schema:affiliation https://www.grid.ac/institutes/grid.9132.9
    109 schema:familyName Klevers
    110 schema:givenName Denis
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010406665757.17
    112 rdf:type schema:Person
    113 sg:person.012222536305.19 schema:affiliation https://www.grid.ac/institutes/grid.8647.d
    114 schema:familyName Cvetič
    115 schema:givenName Mirjam
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012222536305.19
    117 rdf:type schema:Person
    118 sg:person.012704174435.44 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    119 schema:familyName Song
    120 schema:givenName Peng
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012704174435.44
    122 rdf:type schema:Person
    123 sg:person.016623656034.08 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    124 schema:familyName Poretschkin
    125 schema:givenName Maximilian
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623656034.08
    127 rdf:type schema:Person
    128 sg:person.07602416227.55 schema:affiliation https://www.grid.ac/institutes/grid.25879.31
    129 schema:familyName Grassi
    130 schema:givenName Antonella
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07602416227.55
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bfb0097582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034457711
    134 https://doi.org/10.1007/bfb0097582
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/jhep01(2015)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015824654
    137 https://doi.org/10.1007/jhep01(2015)142
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep03(2014)021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050297831
    140 https://doi.org/10.1007/jhep03(2014)021
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/jhep03(2015)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053447440
    143 https://doi.org/10.1007/jhep03(2015)125
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep04(2010)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042037362
    146 https://doi.org/10.1007/jhep04(2010)015
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep04(2014)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000212825
    149 https://doi.org/10.1007/jhep04(2014)010
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep05(2014)135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003965305
    152 https://doi.org/10.1007/jhep05(2014)135
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep06(2012)009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019486359
    155 https://doi.org/10.1007/jhep06(2012)009
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep06(2013)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014002142
    158 https://doi.org/10.1007/jhep06(2013)067
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep08(2011)094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044890911
    161 https://doi.org/10.1007/jhep08(2011)094
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep08(2014)025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053304567
    164 https://doi.org/10.1007/jhep08(2014)025
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep10(2012)128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010261260
    167 https://doi.org/10.1007/jhep10(2012)128
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep10(2014)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028959068
    170 https://doi.org/10.1007/jhep10(2014)016
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep11(2011)101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052400525
    173 https://doi.org/10.1007/jhep11(2011)101
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep11(2012)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047864130
    176 https://doi.org/10.1007/jhep11(2012)004
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep11(2015)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016205402
    179 https://doi.org/10.1007/jhep11(2015)204
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep12(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040057689
    182 https://doi.org/10.1007/jhep12(2013)056
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s002200050154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018223641
    185 https://doi.org/10.1007/s002200050154
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1088/1126-6708/1998/04/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028356774
    188 https://doi.org/10.1088/1126-6708/1998/04/019
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1088/1126-6708/1998/07/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002419177
    191 https://doi.org/10.1088/1126-6708/1998/07/012
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1088/1126-6708/2005/06/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002055338
    194 https://doi.org/10.1088/1126-6708/2005/06/020
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1088/1126-6708/2009/08/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043993189
    197 https://doi.org/10.1088/1126-6708/2009/08/046
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1002/(sici)1521-3978(199906)47:6<587::aid-prop587>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012140245
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/0550-3213(96)00172-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009608360
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/0550-3213(96)00242-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031352207
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/0550-3213(96)00369-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014764878
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/0920-5632(96)00025-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043936153
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.nuclphysb.2008.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053421633
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.nuclphysb.2009.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044676146
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.nuclphysb.2010.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006631592
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.nuclphysb.2014.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046852869
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/s0550-3213(96)00410-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034112884
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/s0550-3213(96)90131-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050972604
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/s0550-3213(97)00516-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048464807
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/s0550-3213(97)80029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017386874
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1103/physrevd.88.046005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060709041
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1112/plms/s3-7.1.414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046727914
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1142/s0129167x12500280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062902632
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1307/mmj/1030132587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064976920
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.2307/1970131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675474
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.4310/ajm.1997.v1.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456177
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.4310/atmp.1998.v2.n6.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456928
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.4310/atmp.2001.v5.n1.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457016
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.4310/atmp.2010.v14.n5.a3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457314
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.4310/atmp.2013.v17.n4.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457400
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.4310/cntp.2012.v6.n1.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072459510
    246 rdf:type schema:CreativeWork
    247 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
    248 schema:name Department of Mathematics, University of Pennsylvania, 19104-6396, Philadelphia, PA, U.S.A.
    249 Department of Physics and Astronomy, University of Pennsylvania, 19104-6396, Philadelphia, PA, U.S.A.
    250 rdf:type schema:Organization
    251 https://www.grid.ac/institutes/grid.8647.d schema:alternateName University of Maribor
    252 schema:name Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia
    253 Department of Physics and Astronomy, University of Pennsylvania, 19104-6396, Philadelphia, PA, U.S.A.
    254 rdf:type schema:Organization
    255 https://www.grid.ac/institutes/grid.9132.9 schema:alternateName European Organization for Nuclear Research
    256 schema:name Theory Group, Physics Department, CERN, CH-1211, Geneva 23, Switzerland
    257 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...