M5 brane and four dimensional = 1 theories I View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-04

AUTHORS

Dan Xie

ABSTRACT

Four dimensional = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin’s equation involving two Higgs fields is proposed as the BPS equation for = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories. More... »

PAGES

154

References to SciGraph publications

  • 2000-06. Principal nilpotent pairs in a semisimple Lie algebra 1 in INVENTIONES MATHEMATICAE
  • 2012-09. N = 2 generalized superconformal quiver gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01. Generalized Hitchin system, spectral curve and =1 dynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07. New superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10. =1 dynamics with TN theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07. 3d dualities from 4d dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06. Four-dimensional SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03. Holographic Uniformization in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-07-20. Six-dimensional DN theory and four-dimensional SO-USp quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01. General Argyres-Douglas theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-05-27. Branches of đť’© = 1 vacua and Argyres-Douglas points in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06. New =1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-06. Supersymmetric Boundary Conditions in Super Yang-Mills Theory in JOURNAL OF STATISTICAL PHYSICS
  • 2014-04. The = 1 superconformal index for class fixed points in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03. Hitchin equation, singularity, and N = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01. Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2014)154

    DOI

    http://dx.doi.org/10.1007/jhep04(2014)154

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038967054


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Dan", 
            "id": "sg:person.014441531117.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(97)00375-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000584456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001669470", 
              "https://doi.org/10.1007/jhep06(2012)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003639124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003639124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532912", 
              "https://doi.org/10.1007/jhep07(2013)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(98)00654-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007002030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.025021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008980359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.025021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008980359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(95)00242-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009909332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010569175", 
              "https://doi.org/10.1007/jhep06(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.121901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013807326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.121901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013807326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2012)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014653824", 
              "https://doi.org/10.1007/jhep09(2012)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-62.2.275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014985414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00472-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015694348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00446-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017369857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-009-9687-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023816735", 
              "https://doi.org/10.1007/s10955-009-9687-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026965803", 
              "https://doi.org/10.1007/jhep10(2013)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027602010", 
              "https://doi.org/10.1007/jhep01(2014)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002220050371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028436496", 
              "https://doi.org/10.1007/s002220050371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(95)00261-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029767902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032453331", 
              "https://doi.org/10.1007/jhep01(2010)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032453331", 
              "https://doi.org/10.1007/jhep01(2010)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033007760", 
              "https://doi.org/10.1007/jhep04(2014)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036285701", 
              "https://doi.org/10.1007/jhep01(2013)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90244-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038989126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90244-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038989126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040084294", 
              "https://doi.org/10.1007/jhep07(2013)149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040546683", 
              "https://doi.org/10.1007/jhep02(2013)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(94)00023-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042221080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042665522", 
              "https://doi.org/10.1007/jhep03(2010)043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042665522", 
              "https://doi.org/10.1007/jhep03(2010)043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1675-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044265165", 
              "https://doi.org/10.1007/s00220-013-1675-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047269577", 
              "https://doi.org/10.1088/1126-6708/2009/07/067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047269577", 
              "https://doi.org/10.1088/1126-6708/2009/07/067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-55.1.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048378410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00648-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050587845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.71.983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051434065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.71.983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051434065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/05/063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051865310", 
              "https://doi.org/10.1088/1126-6708/2003/05/063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00416-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053448346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x01003937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062921757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x1340006x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062927113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-87-05408-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1997.v1.n1.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/cntp.2007.v1.n1.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072459428"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-04", 
        "datePublishedReg": "2014-04-01", 
        "description": "Four dimensional = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin\u2019s equation involving two Higgs fields is proposed as the BPS equation for = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep04(2014)154", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "name": "M5 brane and four dimensional = 1 theories I", 
        "pagination": "154", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b99e4ea7ebaacb39ead8860f8f6880c152f808394ec8967b9651b15056ee1b06"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2014)154"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038967054"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2014)154", 
          "https://app.dimensions.ai/details/publication/pub.1038967054"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000490.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/JHEP04(2014)154"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'


     

    This table displays all metadata directly associated to this object as RDF triples.

    211 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2014)154 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9bae71e9525f4b0ba81904a7706ca8eb
    4 schema:citation sg:pub.10.1007/jhep01(2010)088
    5 sg:pub.10.1007/jhep01(2013)100
    6 sg:pub.10.1007/jhep01(2014)001
    7 sg:pub.10.1007/jhep02(2013)110
    8 sg:pub.10.1007/jhep03(2010)043
    9 sg:pub.10.1007/jhep04(2014)036
    10 sg:pub.10.1007/jhep06(2012)005
    11 sg:pub.10.1007/jhep06(2013)056
    12 sg:pub.10.1007/jhep07(2013)107
    13 sg:pub.10.1007/jhep07(2013)149
    14 sg:pub.10.1007/jhep08(2012)034
    15 sg:pub.10.1007/jhep09(2010)063
    16 sg:pub.10.1007/jhep09(2012)127
    17 sg:pub.10.1007/jhep10(2013)010
    18 sg:pub.10.1007/jhep11(2010)099
    19 sg:pub.10.1007/s00220-013-1675-4
    20 sg:pub.10.1007/s002220050371
    21 sg:pub.10.1007/s10955-009-9687-3
    22 sg:pub.10.1088/1126-6708/2003/05/063
    23 sg:pub.10.1088/1126-6708/2007/12/088
    24 sg:pub.10.1088/1126-6708/2009/07/067
    25 https://doi.org/10.1016/0550-3213(83)90244-4
    26 https://doi.org/10.1016/0550-3213(94)00023-8
    27 https://doi.org/10.1016/0550-3213(95)00242-k
    28 https://doi.org/10.1016/0550-3213(95)00261-p
    29 https://doi.org/10.1016/s0370-2693(97)00375-4
    30 https://doi.org/10.1016/s0550-3213(97)00416-1
    31 https://doi.org/10.1016/s0550-3213(97)00446-x
    32 https://doi.org/10.1016/s0550-3213(97)00472-0
    33 https://doi.org/10.1016/s0550-3213(97)00648-2
    34 https://doi.org/10.1016/s0550-3213(98)00654-3
    35 https://doi.org/10.1103/physrevd.66.025021
    36 https://doi.org/10.1103/physrevd.85.121901
    37 https://doi.org/10.1103/physrevlett.86.588
    38 https://doi.org/10.1103/revmodphys.71.983
    39 https://doi.org/10.1112/plms/s3-55.1.59
    40 https://doi.org/10.1112/plms/s3-62.2.275
    41 https://doi.org/10.1142/s0217751x01003937
    42 https://doi.org/10.1142/s0217751x1340006x
    43 https://doi.org/10.1215/s0012-7094-87-05408-1
    44 https://doi.org/10.4310/atmp.1997.v1.n1.a1
    45 https://doi.org/10.4310/atmp.2009.v13.n3.a5
    46 https://doi.org/10.4310/cntp.2007.v1.n1.a1
    47 schema:datePublished 2014-04
    48 schema:datePublishedReg 2014-04-01
    49 schema:description Four dimensional = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin’s equation involving two Higgs fields is proposed as the BPS equation for = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N478cceb802bd4b43a7bfa38ca78b4168
    54 N5433546ec199467f86f81a75520b45a2
    55 sg:journal.1052482
    56 schema:name M5 brane and four dimensional = 1 theories I
    57 schema:pagination 154
    58 schema:productId N07a9eebb0b45494a8495e27b6d05a63d
    59 N7669d365043946c8acf2bdaf294d5559
    60 Nb3b5be3ef6a04c0a96cb5342d629127b
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038967054
    62 https://doi.org/10.1007/jhep04(2014)154
    63 schema:sdDatePublished 2019-04-10T16:37
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N164852042b454ba485fa086b5bd8c2d7
    66 schema:url http://link.springer.com/10.1007/JHEP04(2014)154
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N07a9eebb0b45494a8495e27b6d05a63d schema:name doi
    71 schema:value 10.1007/jhep04(2014)154
    72 rdf:type schema:PropertyValue
    73 N164852042b454ba485fa086b5bd8c2d7 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N478cceb802bd4b43a7bfa38ca78b4168 schema:volumeNumber 2014
    76 rdf:type schema:PublicationVolume
    77 N5433546ec199467f86f81a75520b45a2 schema:issueNumber 4
    78 rdf:type schema:PublicationIssue
    79 N7669d365043946c8acf2bdaf294d5559 schema:name readcube_id
    80 schema:value b99e4ea7ebaacb39ead8860f8f6880c152f808394ec8967b9651b15056ee1b06
    81 rdf:type schema:PropertyValue
    82 N9bae71e9525f4b0ba81904a7706ca8eb rdf:first sg:person.014441531117.02
    83 rdf:rest rdf:nil
    84 Nb3b5be3ef6a04c0a96cb5342d629127b schema:name dimensions_id
    85 schema:value pub.1038967054
    86 rdf:type schema:PropertyValue
    87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mathematical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Pure Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1052482 schema:issn 1029-8479
    94 1126-6708
    95 schema:name Journal of High Energy Physics
    96 rdf:type schema:Periodical
    97 sg:person.014441531117.02 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    98 schema:familyName Xie
    99 schema:givenName Dan
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02
    101 rdf:type schema:Person
    102 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
    103 https://doi.org/10.1007/jhep01(2010)088
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
    106 https://doi.org/10.1007/jhep01(2013)100
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/jhep01(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602010
    109 https://doi.org/10.1007/jhep01(2014)001
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
    112 https://doi.org/10.1007/jhep02(2013)110
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep03(2010)043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665522
    115 https://doi.org/10.1007/jhep03(2010)043
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep04(2014)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033007760
    118 https://doi.org/10.1007/jhep04(2014)036
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/jhep06(2012)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001669470
    121 https://doi.org/10.1007/jhep06(2012)005
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/jhep06(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010569175
    124 https://doi.org/10.1007/jhep06(2013)056
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/jhep07(2013)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532912
    127 https://doi.org/10.1007/jhep07(2013)107
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep07(2013)149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084294
    130 https://doi.org/10.1007/jhep07(2013)149
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    133 https://doi.org/10.1007/jhep08(2012)034
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    136 https://doi.org/10.1007/jhep09(2010)063
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep09(2012)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653824
    139 https://doi.org/10.1007/jhep09(2012)127
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep10(2013)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965803
    142 https://doi.org/10.1007/jhep10(2013)010
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    145 https://doi.org/10.1007/jhep11(2010)099
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00220-013-1675-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265165
    148 https://doi.org/10.1007/s00220-013-1675-4
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s002220050371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028436496
    151 https://doi.org/10.1007/s002220050371
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s10955-009-9687-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023816735
    154 https://doi.org/10.1007/s10955-009-9687-3
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1088/1126-6708/2003/05/063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051865310
    157 https://doi.org/10.1088/1126-6708/2003/05/063
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    160 https://doi.org/10.1088/1126-6708/2007/12/088
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
    163 https://doi.org/10.1088/1126-6708/2009/07/067
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/0550-3213(83)90244-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038989126
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0550-3213(94)00023-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042221080
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/0550-3213(95)00242-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1009909332
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/0550-3213(95)00261-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1029767902
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/s0370-2693(97)00375-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000584456
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/s0550-3213(97)00416-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053448346
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/s0550-3213(97)00446-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017369857
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/s0550-3213(97)00472-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015694348
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/s0550-3213(97)00648-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050587845
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/s0550-3213(98)00654-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002030
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1103/physrevd.66.025021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008980359
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1103/physrevd.85.121901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013807326
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1103/physrevlett.86.588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003639124
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1103/revmodphys.71.983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051434065
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1112/plms/s3-55.1.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048378410
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1112/plms/s3-62.2.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014985414
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1142/s0217751x01003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062921757
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1142/s0217751x1340006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062927113
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1215/s0012-7094-87-05408-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419356
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.4310/atmp.1997.v1.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456868
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.4310/cntp.2007.v1.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072459428
    208 rdf:type schema:CreativeWork
    209 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    210 schema:name School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A
    211 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...