M5 brane and four dimensional = 1 theories I View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-04-28

AUTHORS

Dan Xie

ABSTRACT

Four dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin’s equation involving two Higgs fields is proposed as the BPS equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories. More... »

PAGES

154

References to SciGraph publications

  • 2000-06. Principal nilpotent pairs in a semisimple Lie algebra 1 in INVENTIONES MATHEMATICAE
  • 2012-09-26. N = 2 generalized superconformal quiver gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-02. Generalized Hitchin system, spectral curve and =1 dynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-02-13. Supersymmetric Boundary Conditions in Super Yang-Mills Theory in JOURNAL OF STATISTICAL PHYSICS
  • 2013-07-17. New superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-01. =1 dynamics with TN theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-07-24. 3d dualities from 4d dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06-01. Four-dimensional SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02-05. Holographic Uniformization in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-07-20. Six-dimensional DN theory and four-dimensional SO-USp quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-15. General Argyres-Douglas theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-05-27. Branches of đť’© = 1 vacua and Argyres-Douglas points in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06-13. New =1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04-07. The = 1 superconformal index for class fixed points in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-09. Hitchin equation, singularity, and N = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02-19. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-21. Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2014)154

    DOI

    http://dx.doi.org/10.1007/jhep04(2014)154

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038967054


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Dan", 
            "id": "sg:person.014441531117.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027602010", 
              "https://doi.org/10.1007/jhep01(2014)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2012)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014653824", 
              "https://doi.org/10.1007/jhep09(2012)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001669470", 
              "https://doi.org/10.1007/jhep06(2012)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002220050371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028436496", 
              "https://doi.org/10.1007/s002220050371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010569175", 
              "https://doi.org/10.1007/jhep06(2013)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-009-9687-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023816735", 
              "https://doi.org/10.1007/s10955-009-9687-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005532912", 
              "https://doi.org/10.1007/jhep07(2013)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036285701", 
              "https://doi.org/10.1007/jhep01(2013)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2013)149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040084294", 
              "https://doi.org/10.1007/jhep07(2013)149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047269577", 
              "https://doi.org/10.1088/1126-6708/2009/07/067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1675-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044265165", 
              "https://doi.org/10.1007/s00220-013-1675-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040546683", 
              "https://doi.org/10.1007/jhep02(2013)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042665522", 
              "https://doi.org/10.1007/jhep03(2010)043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032453331", 
              "https://doi.org/10.1007/jhep01(2010)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033007760", 
              "https://doi.org/10.1007/jhep04(2014)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026965803", 
              "https://doi.org/10.1007/jhep10(2013)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/05/063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051865310", 
              "https://doi.org/10.1088/1126-6708/2003/05/063"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-04-28", 
        "datePublishedReg": "2014-04-28", 
        "description": "Four dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin\u2019s equation involving two Higgs fields is proposed as the BPS equation for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep04(2014)154", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4320404", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2014"
          }
        ], 
        "keywords": [
          "regular punctures", 
          "Riemann surface", 
          "singular boundary conditions", 
          "BPS equations", 
          "Hitchin equations", 
          "dimensional theory", 
          "dual theory", 
          "degeneration limit", 
          "M5-branes", 
          "Seiberg duality", 
          "superpotential terms", 
          "equations", 
          "boundary conditions", 
          "Higgs field", 
          "brane", 
          "theory", 
          "theory I", 
          "compactification", 
          "duality", 
          "field", 
          "terms", 
          "applications", 
          "limit", 
          "surface", 
          "pairs", 
          "subset", 
          "conditions", 
          "NF", 
          "puncture", 
          "paper"
        ], 
        "name": "M5 brane and four dimensional = 1 theories I", 
        "pagination": "154", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038967054"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2014)154"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2014)154", 
          "https://app.dimensions.ai/details/publication/pub.1038967054"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_630.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep04(2014)154"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      21 PREDICATES      75 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2014)154 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nb5eaae3dbdde4a04a43c72c230086093
    4 schema:citation sg:pub.10.1007/jhep01(2010)088
    5 sg:pub.10.1007/jhep01(2013)100
    6 sg:pub.10.1007/jhep01(2014)001
    7 sg:pub.10.1007/jhep02(2013)110
    8 sg:pub.10.1007/jhep03(2010)043
    9 sg:pub.10.1007/jhep04(2014)036
    10 sg:pub.10.1007/jhep06(2012)005
    11 sg:pub.10.1007/jhep06(2013)056
    12 sg:pub.10.1007/jhep07(2013)107
    13 sg:pub.10.1007/jhep07(2013)149
    14 sg:pub.10.1007/jhep08(2012)034
    15 sg:pub.10.1007/jhep09(2010)063
    16 sg:pub.10.1007/jhep09(2012)127
    17 sg:pub.10.1007/jhep10(2013)010
    18 sg:pub.10.1007/jhep11(2010)099
    19 sg:pub.10.1007/s00220-013-1675-4
    20 sg:pub.10.1007/s002220050371
    21 sg:pub.10.1007/s10955-009-9687-3
    22 sg:pub.10.1088/1126-6708/2003/05/063
    23 sg:pub.10.1088/1126-6708/2007/12/088
    24 sg:pub.10.1088/1126-6708/2009/07/067
    25 schema:datePublished 2014-04-28
    26 schema:datePublishedReg 2014-04-28
    27 schema:description Four dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin’s equation involving two Higgs fields is proposed as the BPS equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories.
    28 schema:genre article
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N59cce0003a82406981abb9a66238fc27
    31 N8dbd8fa821894b7c9f0c5d865930ce16
    32 sg:journal.1052482
    33 schema:keywords BPS equations
    34 Higgs field
    35 Hitchin equations
    36 M5-branes
    37 NF
    38 Riemann surface
    39 Seiberg duality
    40 applications
    41 boundary conditions
    42 brane
    43 compactification
    44 conditions
    45 degeneration limit
    46 dimensional theory
    47 dual theory
    48 duality
    49 equations
    50 field
    51 limit
    52 pairs
    53 paper
    54 puncture
    55 regular punctures
    56 singular boundary conditions
    57 subset
    58 superpotential terms
    59 surface
    60 terms
    61 theory
    62 theory I
    63 schema:name M5 brane and four dimensional = 1 theories I
    64 schema:pagination 154
    65 schema:productId N6a15ce23f134460c87d2d363636fe857
    66 Nbaa6a3e2371a46b3b1bc11d735298a84
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038967054
    68 https://doi.org/10.1007/jhep04(2014)154
    69 schema:sdDatePublished 2022-08-04T17:01
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher Ncdaa03b5e8394269bb0de3226fcf8658
    72 schema:url https://doi.org/10.1007/jhep04(2014)154
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N59cce0003a82406981abb9a66238fc27 schema:volumeNumber 2014
    77 rdf:type schema:PublicationVolume
    78 N6a15ce23f134460c87d2d363636fe857 schema:name doi
    79 schema:value 10.1007/jhep04(2014)154
    80 rdf:type schema:PropertyValue
    81 N8dbd8fa821894b7c9f0c5d865930ce16 schema:issueNumber 4
    82 rdf:type schema:PublicationIssue
    83 Nb5eaae3dbdde4a04a43c72c230086093 rdf:first sg:person.014441531117.02
    84 rdf:rest rdf:nil
    85 Nbaa6a3e2371a46b3b1bc11d735298a84 schema:name dimensions_id
    86 schema:value pub.1038967054
    87 rdf:type schema:PropertyValue
    88 Ncdaa03b5e8394269bb0de3226fcf8658 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Mathematical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Pure Mathematics
    95 rdf:type schema:DefinedTerm
    96 sg:grant.4320404 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep04(2014)154
    97 rdf:type schema:MonetaryGrant
    98 sg:journal.1052482 schema:issn 1029-8479
    99 1126-6708
    100 schema:name Journal of High Energy Physics
    101 schema:publisher Springer Nature
    102 rdf:type schema:Periodical
    103 sg:person.014441531117.02 schema:affiliation grid-institutes:grid.78989.37
    104 schema:familyName Xie
    105 schema:givenName Dan
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02
    107 rdf:type schema:Person
    108 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
    109 https://doi.org/10.1007/jhep01(2010)088
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
    112 https://doi.org/10.1007/jhep01(2013)100
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep01(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602010
    115 https://doi.org/10.1007/jhep01(2014)001
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
    118 https://doi.org/10.1007/jhep02(2013)110
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/jhep03(2010)043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665522
    121 https://doi.org/10.1007/jhep03(2010)043
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/jhep04(2014)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033007760
    124 https://doi.org/10.1007/jhep04(2014)036
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/jhep06(2012)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001669470
    127 https://doi.org/10.1007/jhep06(2012)005
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep06(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010569175
    130 https://doi.org/10.1007/jhep06(2013)056
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep07(2013)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532912
    133 https://doi.org/10.1007/jhep07(2013)107
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep07(2013)149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084294
    136 https://doi.org/10.1007/jhep07(2013)149
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    139 https://doi.org/10.1007/jhep08(2012)034
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    142 https://doi.org/10.1007/jhep09(2010)063
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep09(2012)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653824
    145 https://doi.org/10.1007/jhep09(2012)127
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep10(2013)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965803
    148 https://doi.org/10.1007/jhep10(2013)010
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    151 https://doi.org/10.1007/jhep11(2010)099
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00220-013-1675-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265165
    154 https://doi.org/10.1007/s00220-013-1675-4
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s002220050371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028436496
    157 https://doi.org/10.1007/s002220050371
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s10955-009-9687-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023816735
    160 https://doi.org/10.1007/s10955-009-9687-3
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1088/1126-6708/2003/05/063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051865310
    163 https://doi.org/10.1088/1126-6708/2003/05/063
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    166 https://doi.org/10.1088/1126-6708/2007/12/088
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
    169 https://doi.org/10.1088/1126-6708/2009/07/067
    170 rdf:type schema:CreativeWork
    171 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A
    172 schema:name School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...