M5 brane and four dimensional = 1 theories I

Ontology type: schema:ScholarlyArticle      Open Access: True

Article Info

DATE

2014-04-28

AUTHORS ABSTRACT

Four dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin’s equation involving two Higgs fields is proposed as the BPS equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories. More... »

PAGES

154

References to SciGraph publications

• 2000-06. Principal nilpotent pairs in a semisimple Lie algebra 1 in INVENTIONES MATHEMATICAE
• 2012-09-26. N = 2 generalized superconformal quiver gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-01-02. Generalized Hitchin system, spectral curve and =1 dynamics in JOURNAL OF HIGH ENERGY PHYSICS
• 2009-02-13. Supersymmetric Boundary Conditions in Super Yang-Mills Theory in JOURNAL OF STATISTICAL PHYSICS
• 2013-07-17. New superconformal field theories in four dimensions in JOURNAL OF HIGH ENERGY PHYSICS
• 2013-10-01. =1 dynamics with TN theory in JOURNAL OF HIGH ENERGY PHYSICS
• 2013-07-24. 3d dualities from 4d dualities in JOURNAL OF HIGH ENERGY PHYSICS
• 2012-06-01. Four-dimensional SCFTs from M5-branes in JOURNAL OF HIGH ENERGY PHYSICS
• 2013-02-05. Holographic Uniformization in COMMUNICATIONS IN MATHEMATICAL PHYSICS
• 2009-07-20. Six-dimensional DN theory and four-dimensional SO-USp quivers in JOURNAL OF HIGH ENERGY PHYSICS
• 2013-01-15. General Argyres-Douglas theory in JOURNAL OF HIGH ENERGY PHYSICS
• 2003-05-27. Branches of 𝒩 = 1 vacua and Argyres-Douglas points in JOURNAL OF HIGH ENERGY PHYSICS
• 2013-06-13. New =1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
• 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
• 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
• 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-04-07. The = 1 superconformal index for class fixed points in JOURNAL OF HIGH ENERGY PHYSICS
• 2010-03-09. Hitchin equation, singularity, and N = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2013-02-19. Tinkertoys for the DN series in JOURNAL OF HIGH ENERGY PHYSICS
• 2010-01-21. Sicilian gauge theories and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document} = 1 dualities in JOURNAL OF HIGH ENERGY PHYSICS
• Journal

TITLE

Journal of High Energy Physics

ISSUE

4

VOLUME

2014

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep04(2014)154

DOI

http://dx.doi.org/10.1007/jhep04(2014)154

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038967054

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A",
"id": "http://www.grid.ac/institutes/grid.78989.37",
"name": [
"School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A"
],
"type": "Organization"
},
"familyName": "Xie",
"givenName": "Dan",
"id": "sg:person.014441531117.02",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027602010",
"https://doi.org/10.1007/jhep01(2014)001"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2012)127",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014653824",
"https://doi.org/10.1007/jhep09(2012)127"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2012)005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001669470",
"https://doi.org/10.1007/jhep06(2012)005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002220050371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028436496",
"https://doi.org/10.1007/s002220050371"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2010)099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013246104",
"https://doi.org/10.1007/jhep11(2010)099"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2013)056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010569175",
"https://doi.org/10.1007/jhep06(2013)056"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10955-009-9687-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023816735",
"https://doi.org/10.1007/s10955-009-9687-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2013)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005532912",
"https://doi.org/10.1007/jhep07(2013)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2013)100",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036285701",
"https://doi.org/10.1007/jhep01(2013)100"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2013)149",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040084294",
"https://doi.org/10.1007/jhep07(2013)149"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/07/067",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047269577",
"https://doi.org/10.1088/1126-6708/2009/07/067"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-013-1675-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044265165",
"https://doi.org/10.1007/s00220-013-1675-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2013)110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040546683",
"https://doi.org/10.1007/jhep02(2013)110"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2010)043",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042665522",
"https://doi.org/10.1007/jhep03(2010)043"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2010)088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032453331",
"https://doi.org/10.1007/jhep01(2010)088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2010)063",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009424522",
"https://doi.org/10.1007/jhep09(2010)063"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/12/088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051078287",
"https://doi.org/10.1088/1126-6708/2007/12/088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2014)036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033007760",
"https://doi.org/10.1007/jhep04(2014)036"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2013)010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026965803",
"https://doi.org/10.1007/jhep10(2013)010"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2003/05/063",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051865310",
"https://doi.org/10.1088/1126-6708/2003/05/063"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-04-28",
"datePublishedReg": "2014-04-28",
"description": "Four dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{N}$\\end{document} = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin\u2019s equation involving two Higgs fields is proposed as the BPS equation for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{N}$\\end{document} = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\mathcal{N}$\\end{document} =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories.",
"genre": "article",
"id": "sg:pub.10.1007/jhep04(2014)154",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4320404",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"regular punctures",
"Riemann surface",
"singular boundary conditions",
"BPS equations",
"Hitchin equations",
"dimensional theory",
"dual theory",
"degeneration limit",
"M5-branes",
"Seiberg duality",
"superpotential terms",
"equations",
"boundary conditions",
"Higgs field",
"brane",
"theory",
"theory I",
"compactification",
"duality",
"field",
"terms",
"applications",
"limit",
"surface",
"pairs",
"subset",
"conditions",
"NF",
"puncture",
"paper"
],
"name": "M5 brane and four dimensional = 1 theories I",
"pagination": "154",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038967054"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep04(2014)154"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep04(2014)154",
"https://app.dimensions.ai/details/publication/pub.1038967054"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:01",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_630.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep04(2014)154"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)154'

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      75 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 schema:author Nb5eaae3dbdde4a04a43c72c230086093
4 schema:citation sg:pub.10.1007/jhep01(2010)088
5 sg:pub.10.1007/jhep01(2013)100
6 sg:pub.10.1007/jhep01(2014)001
7 sg:pub.10.1007/jhep02(2013)110
8 sg:pub.10.1007/jhep03(2010)043
9 sg:pub.10.1007/jhep04(2014)036
10 sg:pub.10.1007/jhep06(2012)005
11 sg:pub.10.1007/jhep06(2013)056
12 sg:pub.10.1007/jhep07(2013)107
13 sg:pub.10.1007/jhep07(2013)149
14 sg:pub.10.1007/jhep08(2012)034
15 sg:pub.10.1007/jhep09(2010)063
16 sg:pub.10.1007/jhep09(2012)127
17 sg:pub.10.1007/jhep10(2013)010
18 sg:pub.10.1007/jhep11(2010)099
19 sg:pub.10.1007/s00220-013-1675-4
20 sg:pub.10.1007/s002220050371
21 sg:pub.10.1007/s10955-009-9687-3
22 sg:pub.10.1088/1126-6708/2003/05/063
23 sg:pub.10.1088/1126-6708/2007/12/088
24 sg:pub.10.1088/1126-6708/2009/07/067
25 schema:datePublished 2014-04-28
26 schema:datePublishedReg 2014-04-28
27 schema:description Four dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} = 1 theories are engineered by compactifying six dimensional (2, 0) theory on a Riemann surface with regular punctures. A generalized Hitchin’s equation involving two Higgs fields is proposed as the BPS equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} = 1 compactification. The puncture is interpreted as the singular boundary condition of this equation, and regular puncture is shown to be labeled by a nilpotent commuting pair. In this paper, we focus on a subset of regular puncture which is described by rotating branes representing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} =2 puncture. As an application, we show that Seiberg duality of SU(N) SQCD with Nf = 2N and certain superpotential term is realized as different degeneration limits of the same punctured Riemann surface, and find four more dual theories.
28 schema:genre article
29 schema:isAccessibleForFree true
30 schema:isPartOf N59cce0003a82406981abb9a66238fc27
31 N8dbd8fa821894b7c9f0c5d865930ce16
32 sg:journal.1052482
33 schema:keywords BPS equations
34 Higgs field
35 Hitchin equations
36 M5-branes
37 NF
38 Riemann surface
39 Seiberg duality
40 applications
41 boundary conditions
42 brane
43 compactification
44 conditions
45 degeneration limit
46 dimensional theory
47 dual theory
48 duality
49 equations
50 field
51 limit
52 pairs
53 paper
54 puncture
55 regular punctures
56 singular boundary conditions
57 subset
58 superpotential terms
59 surface
60 terms
61 theory
62 theory I
63 schema:name M5 brane and four dimensional = 1 theories I
64 schema:pagination 154
65 schema:productId N6a15ce23f134460c87d2d363636fe857
66 Nbaa6a3e2371a46b3b1bc11d735298a84
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038967054
68 https://doi.org/10.1007/jhep04(2014)154
69 schema:sdDatePublished 2022-08-04T17:01
71 schema:sdPublisher Ncdaa03b5e8394269bb0de3226fcf8658
72 schema:url https://doi.org/10.1007/jhep04(2014)154
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
77 rdf:type schema:PublicationVolume
78 N6a15ce23f134460c87d2d363636fe857 schema:name doi
79 schema:value 10.1007/jhep04(2014)154
80 rdf:type schema:PropertyValue
81 N8dbd8fa821894b7c9f0c5d865930ce16 schema:issueNumber 4
82 rdf:type schema:PublicationIssue
83 Nb5eaae3dbdde4a04a43c72c230086093 rdf:first sg:person.014441531117.02
84 rdf:rest rdf:nil
85 Nbaa6a3e2371a46b3b1bc11d735298a84 schema:name dimensions_id
86 schema:value pub.1038967054
87 rdf:type schema:PropertyValue
88 Ncdaa03b5e8394269bb0de3226fcf8658 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:grant.4320404 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep04(2014)154
97 rdf:type schema:MonetaryGrant
98 sg:journal.1052482 schema:issn 1029-8479
99 1126-6708
100 schema:name Journal of High Energy Physics
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.014441531117.02 schema:affiliation grid-institutes:grid.78989.37
104 schema:familyName Xie
105 schema:givenName Dan
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014441531117.02
107 rdf:type schema:Person
108 sg:pub.10.1007/jhep01(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032453331
109 https://doi.org/10.1007/jhep01(2010)088
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
112 https://doi.org/10.1007/jhep01(2013)100
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/jhep01(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027602010
115 https://doi.org/10.1007/jhep01(2014)001
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/jhep02(2013)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040546683
118 https://doi.org/10.1007/jhep02(2013)110
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/jhep03(2010)043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042665522
121 https://doi.org/10.1007/jhep03(2010)043
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/jhep04(2014)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033007760
124 https://doi.org/10.1007/jhep04(2014)036
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/jhep06(2012)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001669470
127 https://doi.org/10.1007/jhep06(2012)005
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/jhep06(2013)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010569175
130 https://doi.org/10.1007/jhep06(2013)056
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/jhep07(2013)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532912
133 https://doi.org/10.1007/jhep07(2013)107
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/jhep07(2013)149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084294
136 https://doi.org/10.1007/jhep07(2013)149
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
139 https://doi.org/10.1007/jhep08(2012)034
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
142 https://doi.org/10.1007/jhep09(2010)063
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/jhep09(2012)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014653824
145 https://doi.org/10.1007/jhep09(2012)127
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/jhep10(2013)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026965803
148 https://doi.org/10.1007/jhep10(2013)010
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
151 https://doi.org/10.1007/jhep11(2010)099
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00220-013-1675-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265165
154 https://doi.org/10.1007/s00220-013-1675-4
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s002220050371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028436496
157 https://doi.org/10.1007/s002220050371
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10955-009-9687-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023816735
160 https://doi.org/10.1007/s10955-009-9687-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1088/1126-6708/2003/05/063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051865310
163 https://doi.org/10.1088/1126-6708/2003/05/063
164 rdf:type schema:CreativeWork
165 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
166 https://doi.org/10.1088/1126-6708/2007/12/088
167 rdf:type schema:CreativeWork
168 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
169 https://doi.org/10.1088/1126-6708/2009/07/067
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A
172 schema:name School of Natural Sciences, Institute for Advanced Study, 08540, Princeton, NJ, U.S.A
173 rdf:type schema:Organization