Ontology type: schema:ScholarlyArticle Open Access: True
2014-04-07
AUTHORSChristopher Beem, Abhijit Gadde
ABSTRACTWe investigate the superconformal index of four-dimensional superconformal field theories that arise on coincident M5 branes wrapping a holomorphic curve in a local Calabi-Yau three-fold. The structure of the index is very similar to that which appears in the special case preserving \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 supersymmetry. We first compute the index for the fixed points that admit a known four-dimensional ultraviolet description and prove infrared equivalence at the level of the index for all such constructions. These results suggest a formulation of the index as a two-dimensional topological quantum field theory that generalizes the one that computes the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 index. The TQFT structure leads to an expression for the index of a much larger family of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 class S fixed points in terms of the index of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 theories. Calculations of simple quantities with the index suggests a connection between these families of fixed points and the mathematics of SU(2) Yang-Mills theory on the wrapped curve. More... »
PAGES36
http://scigraph.springernature.com/pub.10.1007/jhep04(2014)036
DOIhttp://dx.doi.org/10.1007/jhep04(2014)036
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1033007760
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Simons Center for Geometry and Physics, State University of New York, 11794-3636, Stony Brook, NY, U.S.A",
"id": "http://www.grid.ac/institutes/grid.36425.36",
"name": [
"Simons Center for Geometry and Physics, State University of New York, 11794-3636, Stony Brook, NY, U.S.A"
],
"type": "Organization"
},
"familyName": "Beem",
"givenName": "Christopher",
"id": "sg:person.015137266755.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015137266755.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "California Institute of Technology, 91125, Pasadena, CA, U.S.A",
"id": "http://www.grid.ac/institutes/grid.20861.3d",
"name": [
"California Institute of Technology, 91125, Pasadena, CA, U.S.A"
],
"type": "Organization"
},
"familyName": "Gadde",
"givenName": "Abhijit",
"id": "sg:person.010754731147.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754731147.83"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep06(2013)056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010569175",
"https://doi.org/10.1007/jhep06(2013)056"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2010)088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032453331",
"https://doi.org/10.1007/jhep01(2010)088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2012)005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001669470",
"https://doi.org/10.1007/jhep06(2012)005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-012-1607-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049095812",
"https://doi.org/10.1007/s00220-012-1607-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2011)041",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030328944",
"https://doi.org/10.1007/jhep03(2011)041"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-013-1675-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044265165",
"https://doi.org/10.1007/s00220-013-1675-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2010)032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025314613",
"https://doi.org/10.1007/jhep03(2010)032"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2010)107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033814222",
"https://doi.org/10.1007/jhep08(2010)107"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2010)106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009836669",
"https://doi.org/10.1007/jhep06(2010)106"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-007-0258-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040519445",
"https://doi.org/10.1007/s00220-007-0258-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-013-1863-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039558900",
"https://doi.org/10.1007/s00220-013-1863-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-010-1071-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040539415",
"https://doi.org/10.1007/s00220-010-1071-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2008/05/012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036410639",
"https://doi.org/10.1088/1126-6708/2008/05/012"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-04-07",
"datePublishedReg": "2014-04-07",
"description": "We investigate the superconformal index of four-dimensional superconformal field theories that arise on coincident M5 branes wrapping a holomorphic curve in a local Calabi-Yau three-fold. The structure of the index is very similar to that which appears in the special case preserving \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = 2 supersymmetry. We first compute the index for the fixed points that admit a known four-dimensional ultraviolet description and prove infrared equivalence at the level of the index for all such constructions. These results suggest a formulation of the index as a two-dimensional topological quantum field theory that generalizes the one that computes the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = 2 index. The TQFT structure leads to an expression for the index of a much larger family of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = 1 class S fixed points in terms of the index of the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = 2 theories. Calculations of simple quantities with the index suggests a connection between these families of fixed points and the mathematics of SU(2) Yang-Mills theory on the wrapped curve.",
"genre": "article",
"id": "sg:pub.10.1007/jhep04(2014)036",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2014"
}
],
"keywords": [
"field theory",
"two-dimensional topological quantum field theories",
"topological quantum field theory",
"four-dimensional superconformal field theories",
"quantum field theory",
"superconformal index",
"superconformal field theories",
"local Calabi-Yau",
"Yang-Mills theory",
"coincident M5-branes",
"Calabi-Yau",
"M5-branes",
"holomorphic curves",
"special case",
"simple quantities",
"theory",
"class S",
"TQFT structure",
"such constructions",
"brane",
"supersymmetry",
"mathematics",
"point",
"equivalence",
"formulation",
"calculations",
"class",
"curves",
"description",
"structure",
"terms",
"quantity",
"large family",
"construction",
"one",
"connection",
"three-fold",
"cases",
"results",
"family",
"index",
"expression",
"levels"
],
"name": "The = 1 superconformal index for class fixed points",
"pagination": "36",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033007760"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep04(2014)036"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep04(2014)036",
"https://app.dimensions.ai/details/publication/pub.1033007760"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_624.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep04(2014)036"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)036'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)036'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)036'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2014)036'
This table displays all metadata directly associated to this object as RDF triples.
166 TRIPLES
21 PREDICATES
81 URIs
59 LITERALS
6 BLANK NODES