M5-branes, toric diagrams and gauge theory duality View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04-20

AUTHORS

Ling Bao, Elli Pomoni, Masato Taki, Futoshi Yagi

ABSTRACT

In this article we explore the duality between the low energy effective theory of five-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {1}\,{\text{SU}}{(N)^{{M - {1}}}} $\end{document} and SU(M)N−1 linear quiver gauge theories compactified on S1. The theories we study are the five-dimensional uplifts of four-dimensional superconformal linear quivers. We study this duality by comparing the Seiberg-Witten curves and the Nekrasov partition functions of the two dual theories. The Seiberg-Witten curves are obtained by minimizing the worldvolume of an M5-brane with nontrivial geometry. Nekrasov partition functions are computed using topological string theory. The result of our study is a map between the gauge theory parameters, i.e., Coulomb moduli, masses and UV coupling constants, of the two dual theories. Apart from the obvious physical interest, this duality also leads to compelling mathematical identities. Through the AGTW conjecture these five-dimentional gauge theories are related to q-deformed Liouville and Toda SCFTs in two-dimensions. The duality we study implies the relations between Liouville and Toda correlation functions through the map we derive. More... »

PAGES

105

References to SciGraph publications

  • 2010-06-10. Proving the AGT relation for Nf = 0, 1, 2 antifundamentals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-07. Combinatorial expansions of conformal blocks in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2009-11-04. AN−1 conformal Toda field theory correlation functions from conformal 𝒩 = 2 SU(N) quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09-05. Non-perturbative topological strings and conformal blocks in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-08-17. Phase structure of D-brane gauge theories and toric duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-28. On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture in LETTERS IN MATHEMATICAL PHYSICS
  • 2003-12-03. Topological strings and Nekrasov's formulas in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-08. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-21. Brezin-Gross-Witten model as “pure gauge” limit of Selberg integrals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-04-09. All Loop Topological String Amplitudes from Chern-Simons Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2004-09-24. The Topological Vertex in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-10-28. Uniformization, Calogero-Moser/Heun duality and Sutherland/bubbling pants in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-02-05. Penner type matrix model and Seiberg-Witten theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-02-25. Five-dimensional Chern-Simons terms and Nekrasov's instanton counting in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-12-03. Toric duality is Seiberg duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-01-11. Seiberg-Witten curve via generalized matrix model in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-09. On the superconformal index of IR fixed points. A holographic check in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-07-22. Seiberg-Witten theory, matrix model and AGT relation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-04-16. Matrix models for β-ensembles from Nekrasov partition functions in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-11-18. 5d field theories and M theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-24. Rigid supersymmetric theories in curved superspace in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-11. Integrable structure, W-symmetry and AGT relation in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-16. Elliptic Hypergeometry of Supersymmetric Dualities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-02-04. On AGT conjecture in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09-27. Baxter’sT-Q equation, SU(N)/SU(2)N − 3 correspondence and Ω-deformed Seiberg-Witten prepotential in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-09-05. Matrix model from orbifold partition function in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-07-12. Generalized matrix models and AGT correspondence at all genera in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-02-14. A direct proof of AGT conjecture at β = 1 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-03-17. Refined topological vertex and instanton counting in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-05-21. Multi-instanton calculus and equivariant cohomology in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-05-11. A note on instanton counting for 𝒩 = 2 gauge theories with classical gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-22. Liouville Correlation Functions from Four-Dimensional Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • 2010-08-12. The matrix model version of AGT conjecture and CIV-DV prepotential in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-12-30. Toric duality as Seiberg duality and brane diamonds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-24. The superconformal index of the E6 SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-10-26. The refined topological vertex in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-10-19. Instantons on quivers and orientifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-10. Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-11-24. On S-duality of 5d super Yang-Mills on S1 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-27. Symmetries of Toric Duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-09. A& B model approaches to surface operators and Toda thoeries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-02-09. Matrix model conjecture for exact BS periods and Nekrasov functions in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2012)105

    DOI

    http://dx.doi.org/10.1007/jhep04(2012)105

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053174488


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fundamental Physics, Chalmers University of Technology, 41296, G\u00f6teborg, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.5371.0", 
              "name": [
                "Fundamental Physics, Chalmers University of Technology, 41296, G\u00f6teborg, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bao", 
            "givenName": "Ling", 
            "id": "sg:person.07451133757.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451133757.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mathematik und Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7468.d", 
              "name": [
                "Institut f\u00fcr Mathematik und Institut f\u00fcr Physik, Humboldt-Universit\u00e4t zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pomoni", 
            "givenName": "Elli", 
            "id": "sg:person.013437241123.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013437241123.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, Japan", 
              "id": "http://www.grid.ac/institutes/grid.258799.8", 
              "name": [
                "Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taki", 
            "givenName": "Masato", 
            "id": "sg:person.013234416357.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234416357.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International School of Advanced Studies (SISSA), and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "International School of Advanced Studies (SISSA), and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yagi", 
            "givenName": "Futoshi", 
            "id": "sg:person.012106514747.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep03(2011)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030328944", 
              "https://doi.org/10.1007/jhep03(2011)041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/01/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026223761", 
              "https://doi.org/10.1088/1126-6708/1998/01/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039460242", 
              "https://doi.org/10.1007/jhep06(2010)046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2011)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007162046", 
              "https://doi.org/10.1007/jhep01(2011)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/12/035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007275558", 
              "https://doi.org/10.1088/1126-6708/2001/12/035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004383535", 
              "https://doi.org/10.1007/jhep01(2012)051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012415293", 
              "https://doi.org/10.1007/jhep09(2011)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/12/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011536445", 
              "https://doi.org/10.1088/1126-6708/2003/12/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/03/048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059132731", 
              "https://doi.org/10.1088/1126-6708/2008/03/048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/11/026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020762532", 
              "https://doi.org/10.1088/1126-6708/1999/11/026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/11/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036176184", 
              "https://doi.org/10.1088/1126-6708/2009/11/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046823399", 
              "https://doi.org/10.1007/jhep02(2010)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/08/040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008510756", 
              "https://doi.org/10.1088/1126-6708/2001/08/040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/02/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014217569", 
              "https://doi.org/10.1088/1126-6708/2004/02/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-004-1067-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040658724", 
              "https://doi.org/10.1007/s00220-004-1067-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-010-0067-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036700116", 
              "https://doi.org/10.1007/s11232-010-0067-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031433556", 
              "https://doi.org/10.1088/1126-6708/2002/12/076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027455985", 
              "https://doi.org/10.1007/jhep06(2011)114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024961796", 
              "https://doi.org/10.1007/jhep02(2011)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2011)123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046523163", 
              "https://doi.org/10.1007/jhep11(2011)123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051442340", 
              "https://doi.org/10.1007/jhep09(2011)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/12/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040554299", 
              "https://doi.org/10.1088/1126-6708/2001/12/001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/05/054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053140959", 
              "https://doi.org/10.1088/1126-6708/2003/05/054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013362488", 
              "https://doi.org/10.1007/jhep08(2010)066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2011)102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037030014", 
              "https://doi.org/10.1007/jhep03(2011)102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002714856", 
              "https://doi.org/10.1007/jhep04(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-004-1162-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047832310", 
              "https://doi.org/10.1007/s00220-004-1162-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-011-1218-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038309539", 
              "https://doi.org/10.1007/s00220-011-1218-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0369-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882223", 
              "https://doi.org/10.1007/s11005-010-0369-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2010)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046447991", 
              "https://doi.org/10.1007/jhep10(2010)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/10/037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021320599", 
              "https://doi.org/10.1088/1126-6708/2004/10/037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033814222", 
              "https://doi.org/10.1007/jhep08(2010)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015613731", 
              "https://doi.org/10.1007/jhep02(2010)030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042516170", 
              "https://doi.org/10.1007/jhep09(2011)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2010)081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025090138", 
              "https://doi.org/10.1007/jhep07(2010)081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/05/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002733188", 
              "https://doi.org/10.1088/1126-6708/2004/05/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033175317", 
              "https://doi.org/10.1007/jhep08(2010)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015020596", 
              "https://doi.org/10.1007/jhep03(2010)046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-011-0503-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006738779", 
              "https://doi.org/10.1007/s11005-011-0503-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2011)055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045406015", 
              "https://doi.org/10.1007/jhep07(2011)055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/10/069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012019814", 
              "https://doi.org/10.1088/1126-6708/2009/10/069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2010)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043144023", 
              "https://doi.org/10.1007/jhep02(2010)022"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-04-20", 
        "datePublishedReg": "2012-04-20", 
        "description": "In this article we explore the duality between the low energy effective theory of five-dimensional \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} = {1}\\,{\\text{SU}}{(N)^{{M - {1}}}} $\\end{document} and SU(M)N\u22121 linear quiver gauge theories compactified on S1. The theories we study are the five-dimensional uplifts of four-dimensional superconformal linear quivers. We study this duality by comparing the Seiberg-Witten curves and the Nekrasov partition functions of the two dual theories. The Seiberg-Witten curves are obtained by minimizing the worldvolume of an M5-brane with nontrivial geometry. Nekrasov partition functions are computed using topological string theory. The result of our study is a map between the gauge theory parameters, i.e., Coulomb moduli, masses and UV coupling constants, of the two dual theories. Apart from the obvious physical interest, this duality also leads to compelling mathematical identities. Through the AGTW conjecture these five-dimentional gauge theories are related to q-deformed Liouville and Toda SCFTs in two-dimensions. The duality we study implies the relations between Liouville and Toda correlation functions through the map we derive.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep04(2012)105", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2012"
          }
        ], 
        "keywords": [
          "Seiberg-Witten curve", 
          "Nekrasov partition function", 
          "dual theory", 
          "gauge theory", 
          "topological string theory", 
          "partition function", 
          "quiver gauge theories", 
          "low energy effective theory", 
          "theory duality", 
          "string theory", 
          "mathematical identities", 
          "toric diagrams", 
          "nontrivial geometry", 
          "physical interest", 
          "linear quivers", 
          "Coulomb moduli", 
          "duality", 
          "Liouville", 
          "two-dimensions", 
          "theory parameters", 
          "M5-branes", 
          "effective theory", 
          "correlation functions", 
          "theory", 
          "quivers", 
          "SCFTs", 
          "worldvolume", 
          "function", 
          "geometry", 
          "maps", 
          "coupling constants", 
          "parameters", 
          "curves", 
          "diagram", 
          "interest", 
          "results", 
          "constants", 
          "article", 
          "relation", 
          "S1", 
          "modulus", 
          "mass", 
          "identity", 
          "study", 
          "uplift", 
          "energy effective theory", 
          "five-dimensional uplifts", 
          "four-dimensional superconformal linear quivers", 
          "superconformal linear quivers", 
          "gauge theory parameters", 
          "UV coupling constants", 
          "obvious physical interest", 
          "compelling mathematical identities", 
          "AGTW", 
          "five-dimentional gauge theories", 
          "Toda SCFTs", 
          "Toda correlation functions"
        ], 
        "name": "M5-branes, toric diagrams and gauge theory duality", 
        "pagination": "105", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053174488"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2012)105"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2012)105", 
          "https://app.dimensions.ai/details/publication/pub.1053174488"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_575.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep04(2012)105"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2012)105'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2012)105'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2012)105'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2012)105'


     

    This table displays all metadata directly associated to this object as RDF triples.

    321 TRIPLES      22 PREDICATES      125 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2012)105 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9114615d2a5941c39316f76a81a9e46d
    4 schema:citation sg:pub.10.1007/jhep01(2011)042
    5 sg:pub.10.1007/jhep01(2012)051
    6 sg:pub.10.1007/jhep02(2010)014
    7 sg:pub.10.1007/jhep02(2010)022
    8 sg:pub.10.1007/jhep02(2010)030
    9 sg:pub.10.1007/jhep02(2011)067
    10 sg:pub.10.1007/jhep03(2010)032
    11 sg:pub.10.1007/jhep03(2010)046
    12 sg:pub.10.1007/jhep03(2011)041
    13 sg:pub.10.1007/jhep03(2011)102
    14 sg:pub.10.1007/jhep04(2010)063
    15 sg:pub.10.1007/jhep06(2010)046
    16 sg:pub.10.1007/jhep06(2011)114
    17 sg:pub.10.1007/jhep07(2010)081
    18 sg:pub.10.1007/jhep07(2011)055
    19 sg:pub.10.1007/jhep08(2010)042
    20 sg:pub.10.1007/jhep08(2010)066
    21 sg:pub.10.1007/jhep08(2010)107
    22 sg:pub.10.1007/jhep09(2011)015
    23 sg:pub.10.1007/jhep09(2011)022
    24 sg:pub.10.1007/jhep09(2011)125
    25 sg:pub.10.1007/jhep10(2010)107
    26 sg:pub.10.1007/jhep11(2011)123
    27 sg:pub.10.1007/s00220-004-1067-x
    28 sg:pub.10.1007/s00220-004-1162-z
    29 sg:pub.10.1007/s00220-007-0258-7
    30 sg:pub.10.1007/s00220-011-1218-9
    31 sg:pub.10.1007/s11005-010-0369-5
    32 sg:pub.10.1007/s11005-011-0503-z
    33 sg:pub.10.1007/s11232-010-0067-6
    34 sg:pub.10.1088/1126-6708/1998/01/002
    35 sg:pub.10.1088/1126-6708/1999/11/026
    36 sg:pub.10.1088/1126-6708/2001/08/040
    37 sg:pub.10.1088/1126-6708/2001/12/001
    38 sg:pub.10.1088/1126-6708/2001/12/035
    39 sg:pub.10.1088/1126-6708/2002/12/076
    40 sg:pub.10.1088/1126-6708/2003/05/054
    41 sg:pub.10.1088/1126-6708/2003/12/006
    42 sg:pub.10.1088/1126-6708/2004/02/050
    43 sg:pub.10.1088/1126-6708/2004/05/021
    44 sg:pub.10.1088/1126-6708/2004/10/037
    45 sg:pub.10.1088/1126-6708/2008/03/048
    46 sg:pub.10.1088/1126-6708/2009/10/069
    47 sg:pub.10.1088/1126-6708/2009/11/002
    48 schema:datePublished 2012-04-20
    49 schema:datePublishedReg 2012-04-20
    50 schema:description In this article we explore the duality between the low energy effective theory of five-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {1}\,{\text{SU}}{(N)^{{M - {1}}}} $\end{document} and SU(M)N−1 linear quiver gauge theories compactified on S1. The theories we study are the five-dimensional uplifts of four-dimensional superconformal linear quivers. We study this duality by comparing the Seiberg-Witten curves and the Nekrasov partition functions of the two dual theories. The Seiberg-Witten curves are obtained by minimizing the worldvolume of an M5-brane with nontrivial geometry. Nekrasov partition functions are computed using topological string theory. The result of our study is a map between the gauge theory parameters, i.e., Coulomb moduli, masses and UV coupling constants, of the two dual theories. Apart from the obvious physical interest, this duality also leads to compelling mathematical identities. Through the AGTW conjecture these five-dimentional gauge theories are related to q-deformed Liouville and Toda SCFTs in two-dimensions. The duality we study implies the relations between Liouville and Toda correlation functions through the map we derive.
    51 schema:genre article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree true
    54 schema:isPartOf N242d6c200fa54d28854ba0f154ef3de1
    55 N842276d50fc94e6bb2c345995399dcf7
    56 sg:journal.1052482
    57 schema:keywords AGTW
    58 Coulomb moduli
    59 Liouville
    60 M5-branes
    61 Nekrasov partition function
    62 S1
    63 SCFTs
    64 Seiberg-Witten curve
    65 Toda SCFTs
    66 Toda correlation functions
    67 UV coupling constants
    68 article
    69 compelling mathematical identities
    70 constants
    71 correlation functions
    72 coupling constants
    73 curves
    74 diagram
    75 dual theory
    76 duality
    77 effective theory
    78 energy effective theory
    79 five-dimensional uplifts
    80 five-dimentional gauge theories
    81 four-dimensional superconformal linear quivers
    82 function
    83 gauge theory
    84 gauge theory parameters
    85 geometry
    86 identity
    87 interest
    88 linear quivers
    89 low energy effective theory
    90 maps
    91 mass
    92 mathematical identities
    93 modulus
    94 nontrivial geometry
    95 obvious physical interest
    96 parameters
    97 partition function
    98 physical interest
    99 quiver gauge theories
    100 quivers
    101 relation
    102 results
    103 string theory
    104 study
    105 superconformal linear quivers
    106 theory
    107 theory duality
    108 theory parameters
    109 topological string theory
    110 toric diagrams
    111 two-dimensions
    112 uplift
    113 worldvolume
    114 schema:name M5-branes, toric diagrams and gauge theory duality
    115 schema:pagination 105
    116 schema:productId N7b90c1fc3a5545e1910f46a54297022c
    117 Nf83c394f54384d87a55e07d34ead2ed8
    118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053174488
    119 https://doi.org/10.1007/jhep04(2012)105
    120 schema:sdDatePublished 2021-12-01T19:27
    121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    122 schema:sdPublisher Nd27ed129fcc64ecbbdac5e15bd074d5a
    123 schema:url https://doi.org/10.1007/jhep04(2012)105
    124 sgo:license sg:explorer/license/
    125 sgo:sdDataset articles
    126 rdf:type schema:ScholarlyArticle
    127 N242d6c200fa54d28854ba0f154ef3de1 schema:volumeNumber 2012
    128 rdf:type schema:PublicationVolume
    129 N6701b736715a493c9f8913d1b6bc3c66 rdf:first sg:person.013234416357.08
    130 rdf:rest N6e1040ddf3b844d79de9877bf51fc77b
    131 N6e1040ddf3b844d79de9877bf51fc77b rdf:first sg:person.012106514747.79
    132 rdf:rest rdf:nil
    133 N7b90c1fc3a5545e1910f46a54297022c schema:name doi
    134 schema:value 10.1007/jhep04(2012)105
    135 rdf:type schema:PropertyValue
    136 N842276d50fc94e6bb2c345995399dcf7 schema:issueNumber 4
    137 rdf:type schema:PublicationIssue
    138 N9114615d2a5941c39316f76a81a9e46d rdf:first sg:person.07451133757.12
    139 rdf:rest Nbb80a0086dfc448d8ede261a6b5f2401
    140 Nbb80a0086dfc448d8ede261a6b5f2401 rdf:first sg:person.013437241123.34
    141 rdf:rest N6701b736715a493c9f8913d1b6bc3c66
    142 Nd27ed129fcc64ecbbdac5e15bd074d5a schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 Nf83c394f54384d87a55e07d34ead2ed8 schema:name dimensions_id
    145 schema:value pub.1053174488
    146 rdf:type schema:PropertyValue
    147 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Mathematical Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Pure Mathematics
    152 rdf:type schema:DefinedTerm
    153 sg:journal.1052482 schema:issn 1029-8479
    154 1126-6708
    155 schema:name Journal of High Energy Physics
    156 schema:publisher Springer Nature
    157 rdf:type schema:Periodical
    158 sg:person.012106514747.79 schema:affiliation grid-institutes:None
    159 schema:familyName Yagi
    160 schema:givenName Futoshi
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106514747.79
    162 rdf:type schema:Person
    163 sg:person.013234416357.08 schema:affiliation grid-institutes:grid.258799.8
    164 schema:familyName Taki
    165 schema:givenName Masato
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013234416357.08
    167 rdf:type schema:Person
    168 sg:person.013437241123.34 schema:affiliation grid-institutes:grid.7468.d
    169 schema:familyName Pomoni
    170 schema:givenName Elli
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013437241123.34
    172 rdf:type schema:Person
    173 sg:person.07451133757.12 schema:affiliation grid-institutes:grid.5371.0
    174 schema:familyName Bao
    175 schema:givenName Ling
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07451133757.12
    177 rdf:type schema:Person
    178 sg:pub.10.1007/jhep01(2011)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007162046
    179 https://doi.org/10.1007/jhep01(2011)042
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep01(2012)051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004383535
    182 https://doi.org/10.1007/jhep01(2012)051
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep02(2010)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046823399
    185 https://doi.org/10.1007/jhep02(2010)014
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep02(2010)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043144023
    188 https://doi.org/10.1007/jhep02(2010)022
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep02(2010)030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015613731
    191 https://doi.org/10.1007/jhep02(2010)030
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep02(2011)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024961796
    194 https://doi.org/10.1007/jhep02(2011)067
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    197 https://doi.org/10.1007/jhep03(2010)032
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep03(2010)046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015020596
    200 https://doi.org/10.1007/jhep03(2010)046
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep03(2011)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030328944
    203 https://doi.org/10.1007/jhep03(2011)041
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep03(2011)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037030014
    206 https://doi.org/10.1007/jhep03(2011)102
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep04(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002714856
    209 https://doi.org/10.1007/jhep04(2010)063
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep06(2010)046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039460242
    212 https://doi.org/10.1007/jhep06(2010)046
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep06(2011)114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027455985
    215 https://doi.org/10.1007/jhep06(2011)114
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep07(2010)081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025090138
    218 https://doi.org/10.1007/jhep07(2010)081
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/jhep07(2011)055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045406015
    221 https://doi.org/10.1007/jhep07(2011)055
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/jhep08(2010)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033175317
    224 https://doi.org/10.1007/jhep08(2010)042
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/jhep08(2010)066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013362488
    227 https://doi.org/10.1007/jhep08(2010)066
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/jhep08(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814222
    230 https://doi.org/10.1007/jhep08(2010)107
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/jhep09(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415293
    233 https://doi.org/10.1007/jhep09(2011)015
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1007/jhep09(2011)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051442340
    236 https://doi.org/10.1007/jhep09(2011)022
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1007/jhep09(2011)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516170
    239 https://doi.org/10.1007/jhep09(2011)125
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1007/jhep10(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046447991
    242 https://doi.org/10.1007/jhep10(2010)107
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/jhep11(2011)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523163
    245 https://doi.org/10.1007/jhep11(2011)123
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00220-004-1067-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040658724
    248 https://doi.org/10.1007/s00220-004-1067-x
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00220-004-1162-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047832310
    251 https://doi.org/10.1007/s00220-004-1162-z
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    254 https://doi.org/10.1007/s00220-007-0258-7
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s00220-011-1218-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038309539
    257 https://doi.org/10.1007/s00220-011-1218-9
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
    260 https://doi.org/10.1007/s11005-010-0369-5
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s11005-011-0503-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006738779
    263 https://doi.org/10.1007/s11005-011-0503-z
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s11232-010-0067-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036700116
    266 https://doi.org/10.1007/s11232-010-0067-6
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
    269 https://doi.org/10.1088/1126-6708/1998/01/002
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1088/1126-6708/1999/11/026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020762532
    272 https://doi.org/10.1088/1126-6708/1999/11/026
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1088/1126-6708/2001/08/040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008510756
    275 https://doi.org/10.1088/1126-6708/2001/08/040
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1088/1126-6708/2001/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040554299
    278 https://doi.org/10.1088/1126-6708/2001/12/001
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1088/1126-6708/2001/12/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275558
    281 https://doi.org/10.1088/1126-6708/2001/12/035
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1088/1126-6708/2002/12/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031433556
    284 https://doi.org/10.1088/1126-6708/2002/12/076
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1088/1126-6708/2003/05/054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053140959
    287 https://doi.org/10.1088/1126-6708/2003/05/054
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1088/1126-6708/2003/12/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011536445
    290 https://doi.org/10.1088/1126-6708/2003/12/006
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1088/1126-6708/2004/02/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014217569
    293 https://doi.org/10.1088/1126-6708/2004/02/050
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1088/1126-6708/2004/05/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002733188
    296 https://doi.org/10.1088/1126-6708/2004/05/021
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1088/1126-6708/2004/10/037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021320599
    299 https://doi.org/10.1088/1126-6708/2004/10/037
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1088/1126-6708/2008/03/048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059132731
    302 https://doi.org/10.1088/1126-6708/2008/03/048
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1088/1126-6708/2009/10/069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012019814
    305 https://doi.org/10.1088/1126-6708/2009/10/069
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1088/1126-6708/2009/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036176184
    308 https://doi.org/10.1088/1126-6708/2009/11/002
    309 rdf:type schema:CreativeWork
    310 grid-institutes:None schema:alternateName International School of Advanced Studies (SISSA), and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
    311 schema:name International School of Advanced Studies (SISSA), and INFN, Sezione di Trieste, via Bonomea 265, 34136, Trieste, Italy
    312 rdf:type schema:Organization
    313 grid-institutes:grid.258799.8 schema:alternateName Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, Japan
    314 schema:name Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, Japan
    315 rdf:type schema:Organization
    316 grid-institutes:grid.5371.0 schema:alternateName Fundamental Physics, Chalmers University of Technology, 41296, Göteborg, Sweden
    317 schema:name Fundamental Physics, Chalmers University of Technology, 41296, Göteborg, Sweden
    318 rdf:type schema:Organization
    319 grid-institutes:grid.7468.d schema:alternateName Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489, Berlin, Germany
    320 schema:name Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489, Berlin, Germany
    321 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...