Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04-29

AUTHORS

Anurag Sahay, Tapobrata Sarkar, Gautam Sengupta

ABSTRACT

We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two “mixed” ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system. More... »

PAGES

118

References to SciGraph publications

  • 1981-05. Rotating black holes as dissipative spin-thermodynamical systems in GENERAL RELATIVITY AND GRAVITATION
  • 2003-10. Geometry of Black Hole Thermodynamics in GENERAL RELATIVITY AND GRAVITATION
  • 2001-07-09. The Thermodynamics of Black Holes in LIVING REVIEWS IN RELATIVITY
  • 2008-10-17. Thermodynamic geometry and extremal black holes in string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-12. A Stress Tensor for Anti-de Sitter Gravity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2006-11-07. On the thermodynamic geometry of BTZ black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-06-15. Ruppeiner geometry of RN black holes: flat or curved? in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2010)118

    DOI

    http://dx.doi.org/10.1007/jhep04(2010)118

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023508649


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sahay", 
            "givenName": "Anurag", 
            "id": "sg:person.010037504137.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037504137.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarkar", 
            "givenName": "Tapobrata", 
            "id": "sg:person.01217741634.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sengupta", 
            "givenName": "Gautam", 
            "id": "sg:person.013425054262.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425054262.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.12942/lrr-2001-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011492756", 
              "https://doi.org/10.12942/lrr-2001-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026058111582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040076405", 
              "https://doi.org/10.1023/a:1026058111582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038892679", 
              "https://doi.org/10.1088/1126-6708/2008/10/076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042794521", 
              "https://doi.org/10.1007/bf00756588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/06/059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043891205", 
              "https://doi.org/10.1088/1126-6708/2007/06/059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/11/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043819813", 
              "https://doi.org/10.1088/1126-6708/2006/11/015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023248422", 
              "https://doi.org/10.1007/s002200050764"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04-29", 
        "datePublishedReg": "2010-04-29", 
        "description": "We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two \u201cmixed\u201d ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep04(2010)118", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2010"
          }
        ], 
        "keywords": [
          "black holes", 
          "Kerr\u2013Newman", 
          "first order phase transition", 
          "order phase transition", 
          "AdS black holes", 
          "van der Waals systems", 
          "phase transition", 
          "Sitter black holes", 
          "new phase structure", 
          "phase structure", 
          "novel phase structure", 
          "holes", 
          "second order phase transition", 
          "transition", 
          "critical phenomena", 
          "thermodynamic state space", 
          "scalar curvature", 
          "thermodynamic geometry", 
          "critical point", 
          "ensemble", 
          "consequent instability", 
          "geometry", 
          "structure", 
          "curvature", 
          "instability", 
          "phenomenon", 
          "Riemannian geometry", 
          "curvature diverges", 
          "diverges", 
          "system", 
          "space", 
          "coexistence", 
          "point behavior", 
          "branched structure", 
          "behavior", 
          "neighborhood", 
          "state space", 
          "point", 
          "framework", 
          "information", 
          "anti", 
          "preliminary exercise", 
          "assertion", 
          "exercise", 
          "equilibrium thermodynamic state space", 
          "state space Riemannian geometries", 
          "space Riemannian geometries", 
          "scalar curvature diverges", 
          "state space scalar curvature", 
          "space scalar curvature", 
          "conventional Van der Waals system", 
          "der Waals system", 
          "Waals system"
        ], 
        "name": "Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes", 
        "pagination": "118", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023508649"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2010)118"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2010)118", 
          "https://app.dimensions.ai/details/publication/pub.1023508649"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_524.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep04(2010)118"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      22 PREDICATES      85 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2010)118 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N17b3d3c3f51c44b8a8bdf9a12f735f5e
    4 schema:citation sg:pub.10.1007/bf00756588
    5 sg:pub.10.1007/s002200050764
    6 sg:pub.10.1023/a:1026058111582
    7 sg:pub.10.1088/1126-6708/2006/11/015
    8 sg:pub.10.1088/1126-6708/2007/06/059
    9 sg:pub.10.1088/1126-6708/2008/10/076
    10 sg:pub.10.12942/lrr-2001-6
    11 schema:datePublished 2010-04-29
    12 schema:datePublishedReg 2010-04-29
    13 schema:description We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two “mixed” ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N607b9100fae0476e90a792dfd9d13bbf
    18 Nf2cf9743557c40b18a45aa45ffdecb53
    19 sg:journal.1052482
    20 schema:keywords AdS black holes
    21 Kerr–Newman
    22 Riemannian geometry
    23 Sitter black holes
    24 Waals system
    25 anti
    26 assertion
    27 behavior
    28 black holes
    29 branched structure
    30 coexistence
    31 consequent instability
    32 conventional Van der Waals system
    33 critical phenomena
    34 critical point
    35 curvature
    36 curvature diverges
    37 der Waals system
    38 diverges
    39 ensemble
    40 equilibrium thermodynamic state space
    41 exercise
    42 first order phase transition
    43 framework
    44 geometry
    45 holes
    46 information
    47 instability
    48 neighborhood
    49 new phase structure
    50 novel phase structure
    51 order phase transition
    52 phase structure
    53 phase transition
    54 phenomenon
    55 point
    56 point behavior
    57 preliminary exercise
    58 scalar curvature
    59 scalar curvature diverges
    60 second order phase transition
    61 space
    62 space Riemannian geometries
    63 space scalar curvature
    64 state space
    65 state space Riemannian geometries
    66 state space scalar curvature
    67 structure
    68 system
    69 thermodynamic geometry
    70 thermodynamic state space
    71 transition
    72 van der Waals systems
    73 schema:name Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes
    74 schema:pagination 118
    75 schema:productId Nacef963114274982bcc56f4733f84c4f
    76 Nec22daf8d5434b8d99f126c94052db3f
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023508649
    78 https://doi.org/10.1007/jhep04(2010)118
    79 schema:sdDatePublished 2022-01-01T18:24
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher Nce18900c565a4e689b0715da2e5ce43f
    82 schema:url https://doi.org/10.1007/jhep04(2010)118
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N17b3d3c3f51c44b8a8bdf9a12f735f5e rdf:first sg:person.010037504137.05
    87 rdf:rest N2381d87edfe84d76a8ac1f3bd3fb9b79
    88 N2381d87edfe84d76a8ac1f3bd3fb9b79 rdf:first sg:person.01217741634.65
    89 rdf:rest N61fe3d15076e47e2ad0715ebba4b000b
    90 N607b9100fae0476e90a792dfd9d13bbf schema:volumeNumber 2010
    91 rdf:type schema:PublicationVolume
    92 N61fe3d15076e47e2ad0715ebba4b000b rdf:first sg:person.013425054262.18
    93 rdf:rest rdf:nil
    94 Nacef963114274982bcc56f4733f84c4f schema:name doi
    95 schema:value 10.1007/jhep04(2010)118
    96 rdf:type schema:PropertyValue
    97 Nce18900c565a4e689b0715da2e5ce43f schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 Nec22daf8d5434b8d99f126c94052db3f schema:name dimensions_id
    100 schema:value pub.1023508649
    101 rdf:type schema:PropertyValue
    102 Nf2cf9743557c40b18a45aa45ffdecb53 schema:issueNumber 4
    103 rdf:type schema:PublicationIssue
    104 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Physical Sciences
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Astronomical and Space Sciences
    109 rdf:type schema:DefinedTerm
    110 sg:journal.1052482 schema:issn 1029-8479
    111 1126-6708
    112 schema:name Journal of High Energy Physics
    113 schema:publisher Springer Nature
    114 rdf:type schema:Periodical
    115 sg:person.010037504137.05 schema:affiliation grid-institutes:grid.417965.8
    116 schema:familyName Sahay
    117 schema:givenName Anurag
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037504137.05
    119 rdf:type schema:Person
    120 sg:person.01217741634.65 schema:affiliation grid-institutes:grid.417965.8
    121 schema:familyName Sarkar
    122 schema:givenName Tapobrata
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65
    124 rdf:type schema:Person
    125 sg:person.013425054262.18 schema:affiliation grid-institutes:grid.417965.8
    126 schema:familyName Sengupta
    127 schema:givenName Gautam
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425054262.18
    129 rdf:type schema:Person
    130 sg:pub.10.1007/bf00756588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042794521
    131 https://doi.org/10.1007/bf00756588
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s002200050764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023248422
    134 https://doi.org/10.1007/s002200050764
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1023/a:1026058111582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040076405
    137 https://doi.org/10.1023/a:1026058111582
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1088/1126-6708/2006/11/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043819813
    140 https://doi.org/10.1088/1126-6708/2006/11/015
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1088/1126-6708/2007/06/059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043891205
    143 https://doi.org/10.1088/1126-6708/2007/06/059
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1088/1126-6708/2008/10/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038892679
    146 https://doi.org/10.1088/1126-6708/2008/10/076
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.12942/lrr-2001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011492756
    149 https://doi.org/10.12942/lrr-2001-6
    150 rdf:type schema:CreativeWork
    151 grid-institutes:grid.417965.8 schema:alternateName Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
    152 schema:name Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...