Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04-29

AUTHORS

Anurag Sahay, Tapobrata Sarkar, Gautam Sengupta

ABSTRACT

We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two “mixed” ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system. More... »

PAGES

118

References to SciGraph publications

  • 1981-05. Rotating black holes as dissipative spin-thermodynamical systems in GENERAL RELATIVITY AND GRAVITATION
  • 2003-10. Geometry of Black Hole Thermodynamics in GENERAL RELATIVITY AND GRAVITATION
  • 2001-07-09. The Thermodynamics of Black Holes in LIVING REVIEWS IN RELATIVITY
  • 2008-10-17. Thermodynamic geometry and extremal black holes in string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-12. A Stress Tensor for Anti-de Sitter Gravity in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2006-11-07. On the thermodynamic geometry of BTZ black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-06-15. Ruppeiner geometry of RN black holes: flat or curved? in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep04(2010)118

    DOI

    http://dx.doi.org/10.1007/jhep04(2010)118

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023508649


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sahay", 
            "givenName": "Anurag", 
            "id": "sg:person.010037504137.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037504137.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarkar", 
            "givenName": "Tapobrata", 
            "id": "sg:person.01217741634.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India", 
              "id": "http://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sengupta", 
            "givenName": "Gautam", 
            "id": "sg:person.013425054262.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425054262.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2007/06/059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043891205", 
              "https://doi.org/10.1088/1126-6708/2007/06/059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00756588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042794521", 
              "https://doi.org/10.1007/bf00756588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023248422", 
              "https://doi.org/10.1007/s002200050764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026058111582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040076405", 
              "https://doi.org/10.1023/a:1026058111582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.12942/lrr-2001-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011492756", 
              "https://doi.org/10.12942/lrr-2001-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038892679", 
              "https://doi.org/10.1088/1126-6708/2008/10/076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/11/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043819813", 
              "https://doi.org/10.1088/1126-6708/2006/11/015"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04-29", 
        "datePublishedReg": "2010-04-29", 
        "description": "We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two \u201cmixed\u201d ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep04(2010)118", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2010"
          }
        ], 
        "keywords": [
          "order phase transition", 
          "first-order phase transition", 
          "scalar curvature", 
          "AdS black holes", 
          "black holes", 
          "Kerr\u2013Newman", 
          "phase transition", 
          "second-order phase transition", 
          "thermodynamic state space", 
          "Sitter black holes", 
          "Riemannian geometry", 
          "thermodynamic geometry", 
          "curvature diverges", 
          "critical phenomena", 
          "state space", 
          "new phase structure", 
          "novel phase structure", 
          "critical point", 
          "van der Waals systems", 
          "geometry", 
          "point behavior", 
          "phase structure", 
          "curvature", 
          "ensemble", 
          "holes", 
          "transition", 
          "consequent instability", 
          "system", 
          "space", 
          "diverges", 
          "structure", 
          "neighborhood", 
          "instability", 
          "preliminary exercise", 
          "point", 
          "phenomenon", 
          "framework", 
          "branched structure", 
          "coexistence", 
          "behavior", 
          "information", 
          "assertion", 
          "anti", 
          "exercise"
        ], 
        "name": "Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes", 
        "pagination": "118", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023508649"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep04(2010)118"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep04(2010)118", 
          "https://app.dimensions.ai/details/publication/pub.1023508649"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_525.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep04(2010)118"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)118'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      22 PREDICATES      76 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep04(2010)118 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N98cea5e0c10b4b138ba5413d9c03e316
    4 schema:citation sg:pub.10.1007/bf00756588
    5 sg:pub.10.1007/s002200050764
    6 sg:pub.10.1023/a:1026058111582
    7 sg:pub.10.1088/1126-6708/2006/11/015
    8 sg:pub.10.1088/1126-6708/2007/06/059
    9 sg:pub.10.1088/1126-6708/2008/10/076
    10 sg:pub.10.12942/lrr-2001-6
    11 schema:datePublished 2010-04-29
    12 schema:datePublishedReg 2010-04-29
    13 schema:description We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two “mixed” ensembles and establish novel phase structures. The state space scalar curvature bears out our assertion for the first order phase transitions for both the known and the new phase structures, and closely resembles the Van der Waals system.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N17f2aecf21a548ddb54df9789eefc3e1
    18 N775c5d6e286c4cac89f04818cea9a855
    19 sg:journal.1052482
    20 schema:keywords AdS black holes
    21 Kerr–Newman
    22 Riemannian geometry
    23 Sitter black holes
    24 anti
    25 assertion
    26 behavior
    27 black holes
    28 branched structure
    29 coexistence
    30 consequent instability
    31 critical phenomena
    32 critical point
    33 curvature
    34 curvature diverges
    35 diverges
    36 ensemble
    37 exercise
    38 first-order phase transition
    39 framework
    40 geometry
    41 holes
    42 information
    43 instability
    44 neighborhood
    45 new phase structure
    46 novel phase structure
    47 order phase transition
    48 phase structure
    49 phase transition
    50 phenomenon
    51 point
    52 point behavior
    53 preliminary exercise
    54 scalar curvature
    55 second-order phase transition
    56 space
    57 state space
    58 structure
    59 system
    60 thermodynamic geometry
    61 thermodynamic state space
    62 transition
    63 van der Waals systems
    64 schema:name Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes
    65 schema:pagination 118
    66 schema:productId N34d043813fb844b4b1701689c7a7d17d
    67 Nf8a8311e064a434484070b5e1656bfb0
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023508649
    69 https://doi.org/10.1007/jhep04(2010)118
    70 schema:sdDatePublished 2022-05-10T10:04
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Nf67a0092fca540278c18c48c2697fca6
    73 schema:url https://doi.org/10.1007/jhep04(2010)118
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N17f2aecf21a548ddb54df9789eefc3e1 schema:issueNumber 4
    78 rdf:type schema:PublicationIssue
    79 N34d043813fb844b4b1701689c7a7d17d schema:name doi
    80 schema:value 10.1007/jhep04(2010)118
    81 rdf:type schema:PropertyValue
    82 N775c5d6e286c4cac89f04818cea9a855 schema:volumeNumber 2010
    83 rdf:type schema:PublicationVolume
    84 N98cea5e0c10b4b138ba5413d9c03e316 rdf:first sg:person.010037504137.05
    85 rdf:rest Na118cecdab1648d0bcd75bfba26d8e5f
    86 Na118cecdab1648d0bcd75bfba26d8e5f rdf:first sg:person.01217741634.65
    87 rdf:rest Nec223ac4127646f98cf9979ff987c6e0
    88 Nec223ac4127646f98cf9979ff987c6e0 rdf:first sg:person.013425054262.18
    89 rdf:rest rdf:nil
    90 Nf67a0092fca540278c18c48c2697fca6 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 Nf8a8311e064a434484070b5e1656bfb0 schema:name dimensions_id
    93 schema:value pub.1023508649
    94 rdf:type schema:PropertyValue
    95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Physical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Astronomical and Space Sciences
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1052482 schema:issn 1029-8479
    102 1126-6708
    103 schema:name Journal of High Energy Physics
    104 schema:publisher Springer Nature
    105 rdf:type schema:Periodical
    106 sg:person.010037504137.05 schema:affiliation grid-institutes:grid.417965.8
    107 schema:familyName Sahay
    108 schema:givenName Anurag
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037504137.05
    110 rdf:type schema:Person
    111 sg:person.01217741634.65 schema:affiliation grid-institutes:grid.417965.8
    112 schema:familyName Sarkar
    113 schema:givenName Tapobrata
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65
    115 rdf:type schema:Person
    116 sg:person.013425054262.18 schema:affiliation grid-institutes:grid.417965.8
    117 schema:familyName Sengupta
    118 schema:givenName Gautam
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013425054262.18
    120 rdf:type schema:Person
    121 sg:pub.10.1007/bf00756588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042794521
    122 https://doi.org/10.1007/bf00756588
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s002200050764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023248422
    125 https://doi.org/10.1007/s002200050764
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1023/a:1026058111582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040076405
    128 https://doi.org/10.1023/a:1026058111582
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1088/1126-6708/2006/11/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043819813
    131 https://doi.org/10.1088/1126-6708/2006/11/015
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1088/1126-6708/2007/06/059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043891205
    134 https://doi.org/10.1088/1126-6708/2007/06/059
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1088/1126-6708/2008/10/076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038892679
    137 https://doi.org/10.1088/1126-6708/2008/10/076
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.12942/lrr-2001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011492756
    140 https://doi.org/10.12942/lrr-2001-6
    141 rdf:type schema:CreativeWork
    142 grid-institutes:grid.417965.8 schema:alternateName Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
    143 schema:name Department of Physics, Indian Institute of Technology, 208016, Kanpur, India
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...