Entanglement entropy in non-relativistic field theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04

AUTHORS

Sergey N. Solodukhin

ABSTRACT

We calculate entanglement entropy in a non-relativistic field theory described by the Schrödinger operator. We demonstrate that the entropy is characterized by i) the area law and ii) UV divergences that are identical to those in the relativistic field theory. These observations are further supported by a holographic consideration. We use the non-relativistic symmetry and completely specify entanglement entropy in large class of non-relativistic theories described by the field operators polynomial in derivatives. The entropy of interacting fields is analyzed in some detail. We suggest that the area law of the entropy can be tested in experiments with condensed matter systems such as liquid helium. More... »

PAGES

101

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep04(2010)101

DOI

http://dx.doi.org/10.1007/jhep04(2010)101

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021318242


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fran\u00e7ois Rabelais University", 
          "id": "https://www.grid.ac/institutes/grid.12366.30", 
          "name": [
            "Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique CNRS-UMR 6083, Universit\u00e9 de Tours, Parc de Grandmont, 37200, Tours, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solodukhin", 
        "givenName": "Sergey N.", 
        "id": "sg:person.014630506265.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630506265.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1112/plms/s1-28.1.395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008204348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.43.3907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011883578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.43.3907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011883578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2008.05.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014425231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/06/084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019590387", 
          "https://doi.org/10.1088/1126-6708/2009/06/084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2009/06/084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019590387", 
          "https://doi.org/10.1088/1126-6708/2009/06/084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(94)91007-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(94)91007-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022025261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.046003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023321313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.046003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023321313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(94)90590-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029528444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(94)90590-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029528444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031494786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033182093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.78.106005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033182093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/11/6/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034159646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/50/504007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037519848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/50/504007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037519848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.52.7027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037977848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.52.7027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037977848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.201601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046417193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.201601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046417193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049212475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.061601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049212475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/50/504008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051371240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/42/50/504008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051371240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/10/1/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059064134"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04", 
    "datePublishedReg": "2010-04-01", 
    "description": "We calculate entanglement entropy in a non-relativistic field theory described by the Schr\u00f6dinger operator. We demonstrate that the entropy is characterized by i) the area law and ii) UV divergences that are identical to those in the relativistic field theory. These observations are further supported by a holographic consideration. We use the non-relativistic symmetry and completely specify entanglement entropy in large class of non-relativistic theories described by the field operators polynomial in derivatives. The entropy of interacting fields is analyzed in some detail. We suggest that the area law of the entropy can be tested in experiments with condensed matter systems such as liquid helium.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep04(2010)101", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2010"
      }
    ], 
    "name": "Entanglement entropy in non-relativistic field theories", 
    "pagination": "101", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "65920f0e9536c45b569772896fb4e23bdf57e532fd8d0453e73299215327208d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep04(2010)101"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021318242"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep04(2010)101", 
      "https://app.dimensions.ai/details/publication/pub.1021318242"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP04%282010%29101"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep04(2010)101 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd1b66a656e824cb7b52c557dc42ebf38
4 schema:citation sg:pub.10.1088/1126-6708/2009/06/084
5 https://doi.org/10.1016/0370-2693(94)90590-8
6 https://doi.org/10.1016/0370-2693(94)91007-3
7 https://doi.org/10.1016/j.physletb.2008.05.071
8 https://doi.org/10.1088/0264-9381/11/6/008
9 https://doi.org/10.1088/0305-4470/10/1/023
10 https://doi.org/10.1088/1751-8113/42/50/504007
11 https://doi.org/10.1088/1751-8113/42/50/504008
12 https://doi.org/10.1103/physrevd.43.3907
13 https://doi.org/10.1103/physrevd.52.7027
14 https://doi.org/10.1103/physrevd.78.046003
15 https://doi.org/10.1103/physrevd.78.106005
16 https://doi.org/10.1103/physrevlett.101.061601
17 https://doi.org/10.1103/physrevlett.71.666
18 https://doi.org/10.1103/physrevlett.97.201601
19 https://doi.org/10.1112/plms/s1-28.1.395
20 schema:datePublished 2010-04
21 schema:datePublishedReg 2010-04-01
22 schema:description We calculate entanglement entropy in a non-relativistic field theory described by the Schrödinger operator. We demonstrate that the entropy is characterized by i) the area law and ii) UV divergences that are identical to those in the relativistic field theory. These observations are further supported by a holographic consideration. We use the non-relativistic symmetry and completely specify entanglement entropy in large class of non-relativistic theories described by the field operators polynomial in derivatives. The entropy of interacting fields is analyzed in some detail. We suggest that the area law of the entropy can be tested in experiments with condensed matter systems such as liquid helium.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N2b077e915f1349ef96d80b84dcb0dd62
27 Neab4671870cb49f28fd7bab36e4c0151
28 sg:journal.1052482
29 schema:name Entanglement entropy in non-relativistic field theories
30 schema:pagination 101
31 schema:productId N20342fc0011f40dcb7611e9c129e212b
32 Nd9f75cf55aec4654824f8a64fe534999
33 Ne0a9d5eb5f074647a7ecad559b85337c
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021318242
35 https://doi.org/10.1007/jhep04(2010)101
36 schema:sdDatePublished 2019-04-11T10:28
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Na2a56cbf73884ab4844a7285affcd727
39 schema:url https://link.springer.com/10.1007%2FJHEP04%282010%29101
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N20342fc0011f40dcb7611e9c129e212b schema:name dimensions_id
44 schema:value pub.1021318242
45 rdf:type schema:PropertyValue
46 N2b077e915f1349ef96d80b84dcb0dd62 schema:volumeNumber 2010
47 rdf:type schema:PublicationVolume
48 Na2a56cbf73884ab4844a7285affcd727 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nd1b66a656e824cb7b52c557dc42ebf38 rdf:first sg:person.014630506265.69
51 rdf:rest rdf:nil
52 Nd9f75cf55aec4654824f8a64fe534999 schema:name doi
53 schema:value 10.1007/jhep04(2010)101
54 rdf:type schema:PropertyValue
55 Ne0a9d5eb5f074647a7ecad559b85337c schema:name readcube_id
56 schema:value 65920f0e9536c45b569772896fb4e23bdf57e532fd8d0453e73299215327208d
57 rdf:type schema:PropertyValue
58 Neab4671870cb49f28fd7bab36e4c0151 schema:issueNumber 4
59 rdf:type schema:PublicationIssue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1052482 schema:issn 1029-8479
67 1126-6708
68 schema:name Journal of High Energy Physics
69 rdf:type schema:Periodical
70 sg:person.014630506265.69 schema:affiliation https://www.grid.ac/institutes/grid.12366.30
71 schema:familyName Solodukhin
72 schema:givenName Sergey N.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630506265.69
74 rdf:type schema:Person
75 sg:pub.10.1088/1126-6708/2009/06/084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019590387
76 https://doi.org/10.1088/1126-6708/2009/06/084
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0370-2693(94)90590-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029528444
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0370-2693(94)91007-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022025261
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.physletb.2008.05.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014425231
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1088/0264-9381/11/6/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034159646
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1088/0305-4470/10/1/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064134
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1088/1751-8113/42/50/504007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037519848
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1088/1751-8113/42/50/504008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051371240
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevd.43.3907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011883578
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevd.52.7027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037977848
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevd.78.046003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023321313
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevd.78.106005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182093
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.101.061601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049212475
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.71.666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031494786
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.97.201601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046417193
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1112/plms/s1-28.1.395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008204348
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.12366.30 schema:alternateName François Rabelais University
109 schema:name Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 6083, Université de Tours, Parc de Grandmont, 37200, Tours, France
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...