Ontology type: schema:ScholarlyArticle Open Access: True
2010-04
AUTHORS ABSTRACTWe calculate entanglement entropy in a non-relativistic field theory described by the Schrödinger operator. We demonstrate that the entropy is characterized by i) the area law and ii) UV divergences that are identical to those in the relativistic field theory. These observations are further supported by a holographic consideration. We use the non-relativistic symmetry and completely specify entanglement entropy in large class of non-relativistic theories described by the field operators polynomial in derivatives. The entropy of interacting fields is analyzed in some detail. We suggest that the area law of the entropy can be tested in experiments with condensed matter systems such as liquid helium. More... »
PAGES101
http://scigraph.springernature.com/pub.10.1007/jhep04(2010)101
DOIhttp://dx.doi.org/10.1007/jhep04(2010)101
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1021318242
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Fran\u00e7ois Rabelais University",
"id": "https://www.grid.ac/institutes/grid.12366.30",
"name": [
"Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique CNRS-UMR 6083, Universit\u00e9 de Tours, Parc de Grandmont, 37200, Tours, France"
],
"type": "Organization"
},
"familyName": "Solodukhin",
"givenName": "Sergey N.",
"id": "sg:person.014630506265.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014630506265.69"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1112/plms/s1-28.1.395",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008204348"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.43.3907",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011883578"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.43.3907",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011883578"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physletb.2008.05.071",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014425231"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/06/084",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019590387",
"https://doi.org/10.1088/1126-6708/2009/06/084"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/06/084",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019590387",
"https://doi.org/10.1088/1126-6708/2009/06/084"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(94)91007-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022025261"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(94)91007-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022025261"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.78.046003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023321313"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.78.046003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023321313"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(94)90590-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029528444"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(94)90590-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029528444"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.71.666",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031494786"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.71.666",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031494786"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.78.106005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033182093"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.78.106005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033182093"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0264-9381/11/6/008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034159646"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1751-8113/42/50/504007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037519848"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1751-8113/42/50/504007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037519848"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.52.7027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037977848"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.52.7027",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037977848"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.97.201601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046417193"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.97.201601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046417193"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.101.061601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049212475"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.101.061601",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049212475"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1751-8113/42/50/504008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051371240"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1751-8113/42/50/504008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051371240"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0305-4470/10/1/023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059064134"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-04",
"datePublishedReg": "2010-04-01",
"description": "We calculate entanglement entropy in a non-relativistic field theory described by the Schr\u00f6dinger operator. We demonstrate that the entropy is characterized by i) the area law and ii) UV divergences that are identical to those in the relativistic field theory. These observations are further supported by a holographic consideration. We use the non-relativistic symmetry and completely specify entanglement entropy in large class of non-relativistic theories described by the field operators polynomial in derivatives. The entropy of interacting fields is analyzed in some detail. We suggest that the area law of the entropy can be tested in experiments with condensed matter systems such as liquid helium.",
"genre": "research_article",
"id": "sg:pub.10.1007/jhep04(2010)101",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2010"
}
],
"name": "Entanglement entropy in non-relativistic field theories",
"pagination": "101",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"65920f0e9536c45b569772896fb4e23bdf57e532fd8d0453e73299215327208d"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep04(2010)101"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1021318242"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep04(2010)101",
"https://app.dimensions.ai/details/publication/pub.1021318242"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2FJHEP04%282010%29101"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep04(2010)101'
This table displays all metadata directly associated to this object as RDF triples.
110 TRIPLES
21 PREDICATES
43 URIs
19 LITERALS
7 BLANK NODES