Symmetries of M-theory and free Lie superalgebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Joaquim Gomis, Axel Kleinschmidt, Jakob Palmkvist

ABSTRACT

We study systematically various extensions of the Poincaré superalgebra. The most general structure starting from a set of spinorial supercharges Qα is a free Lie superalgebra that we discuss in detail. We explain how this universal extension of the Poincaré superalgebra gives rise to many other algebras as quotients, some of which have appeared previously in various places in the literature. In particular, we show how some quotients can be very neatly related to Borcherds superalgebras. The ideas put forward also offer some new angles on exotic branes and extended symmetry structures in M-theory. More... »

PAGES

160

References to SciGraph publications

  • 2018-05. Non-relativistic Maxwell Chern-Simons gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-02. Duality invariant actions and generalised geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-09. Gauge fields and infinite chains of dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06. Branes, weights and central charges in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07. Real forms of extended Kac–Moody symmetries and higher spin gauge theories in GENERAL RELATIVITY AND GRAVITATION
  • 2015-08. Superalgebras, constraints and partition functions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-02-12. Representations of 𝒢+++ and the role of space-time in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08. Hidden gauge structure of supersymmetric free differential algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01. The gauge structure of generalised diffeomorphisms in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06. Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01. The local symmetries of M-theory and their formulation in generalised geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05. String solitons and T-duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-02-26. Space-time vector supersymmetry and massive spinning particle in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-07. On free Lie algebras and particles in electro-magnetic fields in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-11. Non-geometric fluxes and mixed-symmetry potentials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05. Forms and algebras in (half-)maximal supergravity theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1974-12. Theory of dynamical affine and conformal symmetries as the theory of the gravitational field in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2011-10. Counting supersymmetric branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-03. Oxidizing Borcherds symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2019)160

    DOI

    http://dx.doi.org/10.1007/jhep03(2019)160

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113046139


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Barcelona", 
              "id": "https://www.grid.ac/institutes/grid.5841.8", 
              "name": [
                "Departament de F\u00edsica Qu\u00e0ntica i Astrof\u00edsica and Institut de Ci\u00e8ncies del Cosmos (ICCUB), Universitat de Barcelona, Mart\u00ed i Franqu\u00e8s, ES-08028, Barcelona, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gomis", 
            "givenName": "Joaquim", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Solvay Institutes", 
              "id": "https://www.grid.ac/institutes/grid.425224.7", 
              "name": [
                "Max-Planck-Institut f\u00fcr Gravitationsphysik (Albert-Einstein-Institut), Am M\u00fchlenberg 1, DE-14476, Potsdam, Germany", 
                "International Solvay Institutes, ULB-Campus Plaine CP231, BE-1050, Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kleinschmidt", 
            "givenName": "Axel", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chalmers University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.5371.0", 
              "name": [
                "Division for Theoretical Physics, Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palmkvist", 
            "givenName": "Jakob", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10714-012-1369-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002861475", 
              "https://doi.org/10.1007/s10714-012-1369-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2012)108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005775932", 
              "https://doi.org/10.1007/jhep02(2012)108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/02/033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011603707", 
              "https://doi.org/10.1088/1126-6708/2004/02/033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2013)044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011778519", 
              "https://doi.org/10.1007/jhep03(2013)044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014851779", 
              "https://doi.org/10.1007/jhep01(2012)012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0001-8708(77)90017-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014933045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prop.19720201202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016880602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-1573(99)00004-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017028698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01038096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020512714", 
              "https://doi.org/10.1007/bf01038096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.104.251603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021806793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.104.251603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021806793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025045439", 
              "https://doi.org/10.1007/jhep08(2016)095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025045439", 
              "https://doi.org/10.1007/jhep08(2016)095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.1937.177.152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026219161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026465813", 
              "https://doi.org/10.1007/jhep08(2015)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029003595", 
              "https://doi.org/10.1007/jhep05(2015)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029003595", 
              "https://doi.org/10.1007/jhep05(2015)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2015)192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031105494", 
              "https://doi.org/10.1007/jhep09(2015)192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2015)192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031105494", 
              "https://doi.org/10.1007/jhep09(2015)192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034279198", 
              "https://doi.org/10.1007/jhep01(2013)064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034453831", 
              "https://doi.org/10.1007/jhep05(2011)131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035939882", 
              "https://doi.org/10.1007/jhep06(2012)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038170990", 
              "https://doi.org/10.1007/jhep06(2013)019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(88)90275-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038323177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/18/16/302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039327839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041798743", 
              "https://doi.org/10.1007/jhep11(2015)020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/02/094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042170140", 
              "https://doi.org/10.1088/1126-6708/2008/02/094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2011)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047117090", 
              "https://doi.org/10.1007/jhep10(2011)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2013.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050096735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.2443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.2443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2017)085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090741758", 
              "https://doi.org/10.1007/jhep07(2017)085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2018)047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103908827", 
              "https://doi.org/10.1007/jhep05(2018)047"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "We study systematically various extensions of the Poincar\u00e9 superalgebra. The most general structure starting from a set of spinorial supercharges Q\u03b1 is a free Lie superalgebra that we discuss in detail. We explain how this universal extension of the Poincar\u00e9 superalgebra gives rise to many other algebras as quotients, some of which have appeared previously in various places in the literature. In particular, we show how some quotients can be very neatly related to Borcherds superalgebras. The ideas put forward also offer some new angles on exotic branes and extended symmetry structures in M-theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep03(2019)160", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "name": "Symmetries of M-theory and free Lie superalgebras", 
        "pagination": "160", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9bacb096c758e8c9177f2ea11cc77db8f3a6e28b4144279c9fc14a203d7a778a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2019)160"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113046139"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2019)160", 
          "https://app.dimensions.ai/details/publication/pub.1113046139"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78935_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP03%282019%29160"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)160'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)160'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)160'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)160'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2019)160 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nba78c86130434df69fbaa2a641974745
    4 schema:citation sg:pub.10.1007/bf01038096
    5 sg:pub.10.1007/jhep01(2012)012
    6 sg:pub.10.1007/jhep01(2013)064
    7 sg:pub.10.1007/jhep02(2012)108
    8 sg:pub.10.1007/jhep03(2013)044
    9 sg:pub.10.1007/jhep05(2011)131
    10 sg:pub.10.1007/jhep05(2015)032
    11 sg:pub.10.1007/jhep05(2018)047
    12 sg:pub.10.1007/jhep06(2012)003
    13 sg:pub.10.1007/jhep06(2013)019
    14 sg:pub.10.1007/jhep07(2017)085
    15 sg:pub.10.1007/jhep08(2015)036
    16 sg:pub.10.1007/jhep08(2016)095
    17 sg:pub.10.1007/jhep09(2015)192
    18 sg:pub.10.1007/jhep10(2011)144
    19 sg:pub.10.1007/jhep11(2015)020
    20 sg:pub.10.1007/s10714-012-1369-9
    21 sg:pub.10.1088/1126-6708/2004/02/033
    22 sg:pub.10.1088/1126-6708/2008/02/094
    23 https://doi.org/10.1002/prop.19720201202
    24 https://doi.org/10.1016/0001-8708(77)90017-2
    25 https://doi.org/10.1016/0021-8693(88)90275-x
    26 https://doi.org/10.1016/j.physrep.2013.07.003
    27 https://doi.org/10.1016/s0370-1573(99)00004-6
    28 https://doi.org/10.1088/0264-9381/18/16/302
    29 https://doi.org/10.1103/physrevlett.104.251603
    30 https://doi.org/10.1103/physrevlett.63.2443
    31 https://doi.org/10.1515/crll.1937.177.152
    32 schema:datePublished 2019-03
    33 schema:datePublishedReg 2019-03-01
    34 schema:description We study systematically various extensions of the Poincaré superalgebra. The most general structure starting from a set of spinorial supercharges Qα is a free Lie superalgebra that we discuss in detail. We explain how this universal extension of the Poincaré superalgebra gives rise to many other algebras as quotients, some of which have appeared previously in various places in the literature. In particular, we show how some quotients can be very neatly related to Borcherds superalgebras. The ideas put forward also offer some new angles on exotic branes and extended symmetry structures in M-theory.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N56bba42a582d4b69a66007e12a378fa5
    39 Nf3a8faef27ea44b284555cc72752d1b7
    40 sg:journal.1052482
    41 schema:name Symmetries of M-theory and free Lie superalgebras
    42 schema:pagination 160
    43 schema:productId N2f4b6f74dc0d4a1e8e6906e794b33b08
    44 N2f9bcd3487c74778a7a44cd763b6699f
    45 N4c45d83425bc44ac97ed63f3f654eb02
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113046139
    47 https://doi.org/10.1007/jhep03(2019)160
    48 schema:sdDatePublished 2019-04-11T13:17
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N4c35469068bd4ac18597a74c63df27bc
    51 schema:url https://link.springer.com/10.1007%2FJHEP03%282019%29160
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N2f4b6f74dc0d4a1e8e6906e794b33b08 schema:name dimensions_id
    56 schema:value pub.1113046139
    57 rdf:type schema:PropertyValue
    58 N2f9bcd3487c74778a7a44cd763b6699f schema:name readcube_id
    59 schema:value 9bacb096c758e8c9177f2ea11cc77db8f3a6e28b4144279c9fc14a203d7a778a
    60 rdf:type schema:PropertyValue
    61 N4c35469068bd4ac18597a74c63df27bc schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N4c45d83425bc44ac97ed63f3f654eb02 schema:name doi
    64 schema:value 10.1007/jhep03(2019)160
    65 rdf:type schema:PropertyValue
    66 N5049ce913e9849a5849b6c18dff921b5 schema:affiliation https://www.grid.ac/institutes/grid.5841.8
    67 schema:familyName Gomis
    68 schema:givenName Joaquim
    69 rdf:type schema:Person
    70 N56bba42a582d4b69a66007e12a378fa5 schema:volumeNumber 2019
    71 rdf:type schema:PublicationVolume
    72 N61f562e13b804fb2bad2b31dc51771a1 schema:affiliation https://www.grid.ac/institutes/grid.425224.7
    73 schema:familyName Kleinschmidt
    74 schema:givenName Axel
    75 rdf:type schema:Person
    76 N72c7db65ba074bcc93f19bc663b3392d schema:affiliation https://www.grid.ac/institutes/grid.5371.0
    77 schema:familyName Palmkvist
    78 schema:givenName Jakob
    79 rdf:type schema:Person
    80 N7a1d875a7c9d42e6b7a6d8ada9dff8cb rdf:first N61f562e13b804fb2bad2b31dc51771a1
    81 rdf:rest Nffad85994f834f3e95d7658d6b15a870
    82 Nba78c86130434df69fbaa2a641974745 rdf:first N5049ce913e9849a5849b6c18dff921b5
    83 rdf:rest N7a1d875a7c9d42e6b7a6d8ada9dff8cb
    84 Nf3a8faef27ea44b284555cc72752d1b7 schema:issueNumber 3
    85 rdf:type schema:PublicationIssue
    86 Nffad85994f834f3e95d7658d6b15a870 rdf:first N72c7db65ba074bcc93f19bc663b3392d
    87 rdf:rest rdf:nil
    88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Mathematical Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Pure Mathematics
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1052482 schema:issn 1029-8479
    95 1126-6708
    96 schema:name Journal of High Energy Physics
    97 rdf:type schema:Periodical
    98 sg:pub.10.1007/bf01038096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020512714
    99 https://doi.org/10.1007/bf01038096
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/jhep01(2012)012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014851779
    102 https://doi.org/10.1007/jhep01(2012)012
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/jhep01(2013)064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034279198
    105 https://doi.org/10.1007/jhep01(2013)064
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/jhep02(2012)108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005775932
    108 https://doi.org/10.1007/jhep02(2012)108
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/jhep03(2013)044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011778519
    111 https://doi.org/10.1007/jhep03(2013)044
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/jhep05(2011)131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034453831
    114 https://doi.org/10.1007/jhep05(2011)131
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/jhep05(2015)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029003595
    117 https://doi.org/10.1007/jhep05(2015)032
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/jhep05(2018)047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103908827
    120 https://doi.org/10.1007/jhep05(2018)047
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/jhep06(2012)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035939882
    123 https://doi.org/10.1007/jhep06(2012)003
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/jhep06(2013)019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038170990
    126 https://doi.org/10.1007/jhep06(2013)019
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/jhep07(2017)085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090741758
    129 https://doi.org/10.1007/jhep07(2017)085
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep08(2015)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026465813
    132 https://doi.org/10.1007/jhep08(2015)036
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep08(2016)095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025045439
    135 https://doi.org/10.1007/jhep08(2016)095
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep09(2015)192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031105494
    138 https://doi.org/10.1007/jhep09(2015)192
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep10(2011)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047117090
    141 https://doi.org/10.1007/jhep10(2011)144
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep11(2015)020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041798743
    144 https://doi.org/10.1007/jhep11(2015)020
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s10714-012-1369-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002861475
    147 https://doi.org/10.1007/s10714-012-1369-9
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1088/1126-6708/2004/02/033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011603707
    150 https://doi.org/10.1088/1126-6708/2004/02/033
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1088/1126-6708/2008/02/094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042170140
    153 https://doi.org/10.1088/1126-6708/2008/02/094
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1002/prop.19720201202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016880602
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/0001-8708(77)90017-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014933045
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/0021-8693(88)90275-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038323177
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/j.physrep.2013.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050096735
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1016/s0370-1573(99)00004-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017028698
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1088/0264-9381/18/16/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039327839
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevlett.104.251603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021806793
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physrevlett.63.2443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799743
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1515/crll.1937.177.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026219161
    172 rdf:type schema:CreativeWork
    173 https://www.grid.ac/institutes/grid.425224.7 schema:alternateName International Solvay Institutes
    174 schema:name International Solvay Institutes, ULB-Campus Plaine CP231, BE-1050, Brussels, Belgium
    175 Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, DE-14476, Potsdam, Germany
    176 rdf:type schema:Organization
    177 https://www.grid.ac/institutes/grid.5371.0 schema:alternateName Chalmers University of Technology
    178 schema:name Division for Theoretical Physics, Department of Physics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.5841.8 schema:alternateName University of Barcelona
    181 schema:name Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès, ES-08028, Barcelona, Spain
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...