Holographic viscoelastic hydrodynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-25

AUTHORS

Alex Buchel, Matteo Baggioli

ABSTRACT

Relativistic fluid hydrodynamics, organized as an effective field theory in the velocity gradients, has zero radius of convergence due to the presence of non-hydrodynamic excitations. Likewise, the theory of elasticity of brittle solids, organized as an effective field theory in the strain gradients, has zero radius of convergence due to the process of the thermal nucleation of cracks. Viscoelastic materials share properties of both fluids and solids. We use holographic gauge theory/gravity correspondence to study all order hydrodynamics of relativistic viscoelastic media. More... »

PAGES

146

References to SciGraph publications

  • 2016-07-14. Viscosity bound violation in holographic solids and the viscoelastic response in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-04-29. Relativistic viscous hydrodynamics, conformal invariance, and holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-14. Pinning of longitudinal phonons in holographic spontaneous helices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-07. Holographic vitrification in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-07-17. Constraints on the second order transport coefficients of an uncharged fluid in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-01-25. Black hole elasticity and gapped transverse phonons in holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-02-17. Solid holography and massive gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-08-29. Singularity development and supersymmetry in holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-02-14. Nonlinear fluid dynamics from gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-10-06. The shear viscosity in anisotropic phases in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-04. The Large-N Limit of Superconformal Field Theories and Supergravity in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2018-03-07. Non-conformal holographic Gauss-Bonnet hydrodynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-24. Erratum to: Nonlocal probes of thermalization in holographic quenches with spectral methods in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-14. Superfluid black branes in AdS4 × S7 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-12-20. Conformal solids and holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-14. Quantum quenches of holographic plasmas in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-04-30. Dynamical black holes and expanding plasmas in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-03-22. De Sitter vacua of strongly interacting QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04-07. Holographic Q-lattices in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-07-18. Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-12-03. Holographic superconductors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-24. Entropy production, viscosity bounds and bumpy black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-07-27. Unstable horizons and singularity development in holography in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2019)146

    DOI

    http://dx.doi.org/10.1007/jhep03(2019)146

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113005905


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Perimeter Institute for Theoretical Physics, 31 Caroline St N, N2L 2Y5, Waterloo, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Department of Applied Mathematics, Western University, Middlesex College Room 255, 1151 Richmond Street, N6A 5B7, London, Ontario, Canada", 
                "The Department of Physics and Astronomy, PAB Room 138, 1151 Richmond Street, N6A 3K7, London, Ontario, Canada", 
                "Perimeter Institute for Theoretical Physics, 31 Caroline St N, N2L 2Y5, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Buchel", 
            "givenName": "Alex", 
            "id": "sg:person.011346431761.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011346431761.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Crete Center for Theoretical Physics, Physics Department, University of Crete, P.O. Box 2208, 71003, Heraklion, Crete, Greece", 
              "id": "http://www.grid.ac/institutes/grid.8127.c", 
              "name": [
                "Crete Center for Theoretical Physics, Physics Department, University of Crete, P.O. Box 2208, 71003, Heraklion, Crete, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baggioli", 
            "givenName": "Matteo", 
            "id": "sg:person.011001073355.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001073355.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2008/12/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059132768", 
              "https://doi.org/10.1088/1126-6708/2008/12/015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/04/100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004526118", 
              "https://doi.org/10.1088/1126-6708/2008/04/100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026654312961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042716891", 
              "https://doi.org/10.1023/a:1026654312961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024908841", 
              "https://doi.org/10.1007/jhep05(2013)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2018)129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100667700", 
              "https://doi.org/10.1007/jhep01(2018)129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2017)134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091401941", 
              "https://doi.org/10.1007/jhep08(2017)134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2018)037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101386010", 
              "https://doi.org/10.1007/jhep03(2018)037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045533836", 
              "https://doi.org/10.1007/jhep04(2015)027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2016)114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033784676", 
              "https://doi.org/10.1007/jhep02(2016)114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050550770", 
              "https://doi.org/10.1007/jhep04(2014)040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101110863", 
              "https://doi.org/10.1007/jhep02(2018)085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/04/137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032001255", 
              "https://doi.org/10.1088/1126-6708/2009/04/137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2017)114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084017791", 
              "https://doi.org/10.1007/jhep03(2017)114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2017)113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099729806", 
              "https://doi.org/10.1007/jhep12(2017)113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/02/045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040401113", 
              "https://doi.org/10.1088/1126-6708/2008/02/045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2014)086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049223020", 
              "https://doi.org/10.1007/jhep07(2014)086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047808615", 
              "https://doi.org/10.1007/jhep06(2011)053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504078", 
              "https://doi.org/10.1007/jhep07(2016)074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002207218", 
              "https://doi.org/10.1007/jhep07(2015)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2017)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090911680", 
              "https://doi.org/10.1007/jhep07(2017)135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2012)104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036947605", 
              "https://doi.org/10.1007/jhep07(2012)104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033597361", 
              "https://doi.org/10.1007/jhep03(2016)170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2015)028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048667606", 
              "https://doi.org/10.1007/jhep10(2015)028"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-25", 
        "datePublishedReg": "2019-03-25", 
        "description": "Relativistic fluid hydrodynamics, organized as an effective field theory in the velocity gradients, has zero radius of convergence due to the presence of non-hydrodynamic excitations. Likewise, the theory of elasticity of brittle solids, organized as an effective field theory in the strain gradients, has zero radius of convergence due to the process of the thermal nucleation of cracks. Viscoelastic materials share properties of both fluids and solids. We use holographic gauge theory/gravity correspondence to study all order hydrodynamics of relativistic viscoelastic media.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep03(2019)146", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "brittle solids", 
          "theory of elasticity", 
          "viscoelastic materials", 
          "strain gradient", 
          "viscoelastic medium", 
          "fluid hydrodynamics", 
          "velocity gradient", 
          "hydrodynamics", 
          "thermal nucleation", 
          "solids", 
          "order hydrodynamics", 
          "cracks", 
          "gradient", 
          "radius", 
          "nucleation", 
          "elasticity", 
          "materials", 
          "properties", 
          "fluid", 
          "gravity correspondence", 
          "radius of convergence", 
          "convergence", 
          "excitation", 
          "process", 
          "theory", 
          "medium", 
          "presence", 
          "correspondence", 
          "effective field theory", 
          "field theory", 
          "Relativistic fluid hydrodynamics", 
          "non-hydrodynamic excitations", 
          "holographic gauge theory/gravity correspondence", 
          "gauge theory/gravity correspondence", 
          "theory/gravity correspondence", 
          "relativistic viscoelastic media", 
          "Holographic viscoelastic hydrodynamics", 
          "viscoelastic hydrodynamics"
        ], 
        "name": "Holographic viscoelastic hydrodynamics", 
        "pagination": "146", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113005905"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2019)146"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2019)146", 
          "https://app.dimensions.ai/details/publication/pub.1113005905"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_794.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep03(2019)146"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)146'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)146'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)146'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)146'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      22 PREDICATES      88 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2019)146 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 anzsrc-for:0206
    6 schema:author N19157ea0dba04c87ac33fec50333f3d2
    7 schema:citation sg:pub.10.1007/jhep01(2018)129
    8 sg:pub.10.1007/jhep02(2016)114
    9 sg:pub.10.1007/jhep02(2018)085
    10 sg:pub.10.1007/jhep03(2016)170
    11 sg:pub.10.1007/jhep03(2017)114
    12 sg:pub.10.1007/jhep03(2018)037
    13 sg:pub.10.1007/jhep04(2014)040
    14 sg:pub.10.1007/jhep04(2015)027
    15 sg:pub.10.1007/jhep05(2013)067
    16 sg:pub.10.1007/jhep06(2011)053
    17 sg:pub.10.1007/jhep07(2012)104
    18 sg:pub.10.1007/jhep07(2014)086
    19 sg:pub.10.1007/jhep07(2015)137
    20 sg:pub.10.1007/jhep07(2016)074
    21 sg:pub.10.1007/jhep07(2017)135
    22 sg:pub.10.1007/jhep08(2017)134
    23 sg:pub.10.1007/jhep10(2015)028
    24 sg:pub.10.1007/jhep12(2017)113
    25 sg:pub.10.1023/a:1026654312961
    26 sg:pub.10.1088/1126-6708/2008/02/045
    27 sg:pub.10.1088/1126-6708/2008/04/100
    28 sg:pub.10.1088/1126-6708/2008/12/015
    29 sg:pub.10.1088/1126-6708/2009/04/137
    30 schema:datePublished 2019-03-25
    31 schema:datePublishedReg 2019-03-25
    32 schema:description Relativistic fluid hydrodynamics, organized as an effective field theory in the velocity gradients, has zero radius of convergence due to the presence of non-hydrodynamic excitations. Likewise, the theory of elasticity of brittle solids, organized as an effective field theory in the strain gradients, has zero radius of convergence due to the process of the thermal nucleation of cracks. Viscoelastic materials share properties of both fluids and solids. We use holographic gauge theory/gravity correspondence to study all order hydrodynamics of relativistic viscoelastic media.
    33 schema:genre article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N661ebb7b63f8474aa14dc57e2dbb7db1
    37 Nf0efd8d2943644d6a9982134f6ddb594
    38 sg:journal.1052482
    39 schema:keywords Holographic viscoelastic hydrodynamics
    40 Relativistic fluid hydrodynamics
    41 brittle solids
    42 convergence
    43 correspondence
    44 cracks
    45 effective field theory
    46 elasticity
    47 excitation
    48 field theory
    49 fluid
    50 fluid hydrodynamics
    51 gauge theory/gravity correspondence
    52 gradient
    53 gravity correspondence
    54 holographic gauge theory/gravity correspondence
    55 hydrodynamics
    56 materials
    57 medium
    58 non-hydrodynamic excitations
    59 nucleation
    60 order hydrodynamics
    61 presence
    62 process
    63 properties
    64 radius
    65 radius of convergence
    66 relativistic viscoelastic media
    67 solids
    68 strain gradient
    69 theory
    70 theory of elasticity
    71 theory/gravity correspondence
    72 thermal nucleation
    73 velocity gradient
    74 viscoelastic hydrodynamics
    75 viscoelastic materials
    76 viscoelastic medium
    77 schema:name Holographic viscoelastic hydrodynamics
    78 schema:pagination 146
    79 schema:productId N12862bbad6cc4500aa8545cfd1bfd8b8
    80 N5a2de0dbc36741ae8b2ac42a437ba38b
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113005905
    82 https://doi.org/10.1007/jhep03(2019)146
    83 schema:sdDatePublished 2021-12-01T19:43
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N869abec7f5cf40adba638f5cf06fb1e2
    86 schema:url https://doi.org/10.1007/jhep03(2019)146
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N12862bbad6cc4500aa8545cfd1bfd8b8 schema:name dimensions_id
    91 schema:value pub.1113005905
    92 rdf:type schema:PropertyValue
    93 N19157ea0dba04c87ac33fec50333f3d2 rdf:first sg:person.011346431761.91
    94 rdf:rest N3aba2cc57f4146478ff864087f19b14b
    95 N3aba2cc57f4146478ff864087f19b14b rdf:first sg:person.011001073355.96
    96 rdf:rest rdf:nil
    97 N5a2de0dbc36741ae8b2ac42a437ba38b schema:name doi
    98 schema:value 10.1007/jhep03(2019)146
    99 rdf:type schema:PropertyValue
    100 N661ebb7b63f8474aa14dc57e2dbb7db1 schema:volumeNumber 2019
    101 rdf:type schema:PublicationVolume
    102 N869abec7f5cf40adba638f5cf06fb1e2 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 Nf0efd8d2943644d6a9982134f6ddb594 schema:issueNumber 3
    105 rdf:type schema:PublicationIssue
    106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Mathematical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Mathematical Physics
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Physical Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Quantum Physics
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1052482 schema:issn 1029-8479
    122 1126-6708
    123 schema:name Journal of High Energy Physics
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.011001073355.96 schema:affiliation grid-institutes:grid.8127.c
    127 schema:familyName Baggioli
    128 schema:givenName Matteo
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011001073355.96
    130 rdf:type schema:Person
    131 sg:person.011346431761.91 schema:affiliation grid-institutes:grid.420198.6
    132 schema:familyName Buchel
    133 schema:givenName Alex
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011346431761.91
    135 rdf:type schema:Person
    136 sg:pub.10.1007/jhep01(2018)129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100667700
    137 https://doi.org/10.1007/jhep01(2018)129
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep02(2016)114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033784676
    140 https://doi.org/10.1007/jhep02(2016)114
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/jhep02(2018)085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101110863
    143 https://doi.org/10.1007/jhep02(2018)085
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep03(2016)170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033597361
    146 https://doi.org/10.1007/jhep03(2016)170
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep03(2017)114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017791
    149 https://doi.org/10.1007/jhep03(2017)114
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep03(2018)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101386010
    152 https://doi.org/10.1007/jhep03(2018)037
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep04(2014)040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050550770
    155 https://doi.org/10.1007/jhep04(2014)040
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep04(2015)027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045533836
    158 https://doi.org/10.1007/jhep04(2015)027
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep05(2013)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024908841
    161 https://doi.org/10.1007/jhep05(2013)067
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep06(2011)053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047808615
    164 https://doi.org/10.1007/jhep06(2011)053
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep07(2012)104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036947605
    167 https://doi.org/10.1007/jhep07(2012)104
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep07(2014)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049223020
    170 https://doi.org/10.1007/jhep07(2014)086
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep07(2015)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002207218
    173 https://doi.org/10.1007/jhep07(2015)137
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep07(2016)074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017504078
    176 https://doi.org/10.1007/jhep07(2016)074
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep07(2017)135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090911680
    179 https://doi.org/10.1007/jhep07(2017)135
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep08(2017)134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091401941
    182 https://doi.org/10.1007/jhep08(2017)134
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep10(2015)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048667606
    185 https://doi.org/10.1007/jhep10(2015)028
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep12(2017)113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099729806
    188 https://doi.org/10.1007/jhep12(2017)113
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1023/a:1026654312961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042716891
    191 https://doi.org/10.1023/a:1026654312961
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1088/1126-6708/2008/02/045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040401113
    194 https://doi.org/10.1088/1126-6708/2008/02/045
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1088/1126-6708/2008/04/100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004526118
    197 https://doi.org/10.1088/1126-6708/2008/04/100
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1088/1126-6708/2008/12/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059132768
    200 https://doi.org/10.1088/1126-6708/2008/12/015
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1088/1126-6708/2009/04/137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032001255
    203 https://doi.org/10.1088/1126-6708/2009/04/137
    204 rdf:type schema:CreativeWork
    205 grid-institutes:grid.420198.6 schema:alternateName Perimeter Institute for Theoretical Physics, 31 Caroline St N, N2L 2Y5, Waterloo, ON, Canada
    206 schema:name Department of Applied Mathematics, Western University, Middlesex College Room 255, 1151 Richmond Street, N6A 5B7, London, Ontario, Canada
    207 Perimeter Institute for Theoretical Physics, 31 Caroline St N, N2L 2Y5, Waterloo, ON, Canada
    208 The Department of Physics and Astronomy, PAB Room 138, 1151 Richmond Street, N6A 3K7, London, Ontario, Canada
    209 rdf:type schema:Organization
    210 grid-institutes:grid.8127.c schema:alternateName Crete Center for Theoretical Physics, Physics Department, University of Crete, P.O. Box 2208, 71003, Heraklion, Crete, Greece
    211 schema:name Crete Center for Theoretical Physics, Physics Department, University of Crete, P.O. Box 2208, 71003, Heraklion, Crete, Greece
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...