On 2-group global symmetries and their anomalies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-21

AUTHORS

Francesco Benini, Clay Córdova, Po-Shen Hsin

ABSTRACT

In general quantum field theories (QFTs), ordinary (0-form) global symmetries and 1-form symmetries can combine into 2-group global symmetries. We describe this phenomenon in detail using the language of symmetry defects. We exhibit a simple procedure to determine the (possible) 2-group global symmetry of a given QFT, and provide a classification of the related ’t Hooft anomalies (for symmetries not acting on spacetime). We also describe how QFTs can be coupled to extrinsic backgrounds for symmetry groups that differ from the intrinsic symmetry acting faithfully on the theory. Finally, we provide a variety of examples, ranging from TQFTs (gapped systems) to gapless QFTs. Along the way, we stress that the “obstruction to symmetry fractionalization” discussed in some condensed matter literature is really an instance of 2-group global symmetry. More... »

PAGES

118

References to SciGraph publications

  • 1989-06. Classical and quantum conformal field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2018-01-23. A symmetry breaking scenario for QCD3 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-08. Contact terms, unitarity, and F -maximization in three-dimensional superconformal theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-12. Three-dimensional dualities with bosons and fermions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-17. Shortening anomalies in supersymmetric theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-26. Generalized global symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-10-08. From gauge to higher gauge models of topological phases in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-02-14. Chern-Simons-matter dualities with SO and USp gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-18. State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-24. Framed Wilson operators, fermionic strings, and gravitational anomaly in 4d in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-08-04. A class of topological actions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-03. Topological defect lines and renormalization group flows in two dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-10-04. D-brane charges in five-brane backgrounds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-21. Comments on global symmetries, anomalies, and duality in (2 + 1)d in JOURNAL OF HIGH ENERGY PHYSICS
  • 1949-12. On simply connected, 4-dimensional polyhedra in COMMENTARII MATHEMATICI HELVETICI
  • 2014-04-01. Coupling a QFT to a TQFT and duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980. Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking in RECENT DEVELOPMENTS IN GAUGE THEORIES
  • 2019-02-27. Exploring 2-group global symmetries in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-03-29. On finite symmetries and their gauging in two dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2019)118

    DOI

    http://dx.doi.org/10.1007/jhep03(2019)118

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112965917


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "SISSA, via Bonomea 265, Trieste, Italy", 
                "INFN \u2014 Sezione di Trieste, via Valerio 2, Trieste, Italy", 
                "School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benini", 
            "givenName": "Francesco", 
            "id": "sg:person.011505670225.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "C\u00f3rdova", 
            "givenName": "Clay", 
            "id": "sg:person.015742405653.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742405653.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Physics Department, Princeton University, Princeton, NJ, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.16750.35", 
              "name": [
                "Physics Department, Princeton University, Princeton, NJ, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsin", 
            "givenName": "Po-Shen", 
            "id": "sg:person.010670325432.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670325432.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep03(2018)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101888290", 
              "https://doi.org/10.1007/jhep03(2018)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084933417", 
              "https://doi.org/10.1007/jhep04(2017)096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101017410", 
              "https://doi.org/10.1007/jhep02(2018)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050438096", 
              "https://doi.org/10.1007/jhep02(2015)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024076455", 
              "https://doi.org/10.1007/jhep01(2017)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083821326", 
              "https://doi.org/10.1007/jhep02(2017)072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02568048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030596780", 
              "https://doi.org/10.1007/bf02568048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2018)049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107532968", 
              "https://doi.org/10.1007/jhep10(2018)049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035305733", 
              "https://doi.org/10.1007/jhep10(2012)053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045360529", 
              "https://doi.org/10.1007/jhep02(2015)172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2018)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100668843", 
              "https://doi.org/10.1007/jhep01(2018)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-7571-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011455159", 
              "https://doi.org/10.1007/978-1-4684-7571-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034666835", 
              "https://doi.org/10.1007/bf01238857"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2019)184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112464455", 
              "https://doi.org/10.1007/jhep02(2019)184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111251094", 
              "https://doi.org/10.1007/jhep01(2019)026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/08/027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041815571", 
              "https://doi.org/10.1088/1126-6708/2005/08/027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2001/10/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024644920", 
              "https://doi.org/10.1088/1126-6708/2001/10/005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2014)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023529369", 
              "https://doi.org/10.1007/jhep04(2014)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085045747", 
              "https://doi.org/10.1007/jhep04(2017)135"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-21", 
        "datePublishedReg": "2019-03-21", 
        "description": "In general quantum field theories (QFTs), ordinary (0-form) global symmetries and 1-form symmetries can combine into 2-group global symmetries. We describe this phenomenon in detail using the language of symmetry defects. We exhibit a simple procedure to determine the (possible) 2-group global symmetry of a given QFT, and provide a classification of the related \u2019t Hooft anomalies (for symmetries not acting on spacetime). We also describe how QFTs can be coupled to extrinsic backgrounds for symmetry groups that differ from the intrinsic symmetry acting faithfully on the theory. Finally, we provide a variety of examples, ranging from TQFTs (gapped systems) to gapless QFTs. Along the way, we stress that the \u201cobstruction to symmetry fractionalization\u201d discussed in some condensed matter literature is really an instance of 2-group global symmetry.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep03(2019)118", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4320404", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "quantum field theory", 
          "global symmetry", 
          "general quantum field theory", 
          "t Hooft anomalies", 
          "field theory", 
          "symmetry group", 
          "matter literature", 
          "symmetry fractionalization", 
          "variety of examples", 
          "symmetry defects", 
          "intrinsic symmetry", 
          "symmetry", 
          "theory", 
          "TQFT", 
          "extrinsic background", 
          "fractionalization", 
          "simple procedure", 
          "phenomenon", 
          "instances", 
          "detail", 
          "anomalies", 
          "procedure", 
          "way", 
          "variety", 
          "literature", 
          "classification", 
          "background", 
          "defects", 
          "language", 
          "group", 
          "obstruction", 
          "example"
        ], 
        "name": "On 2-group global symmetries and their anomalies", 
        "pagination": "118", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112965917"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2019)118"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2019)118", 
          "https://app.dimensions.ai/details/publication/pub.1112965917"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_827.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep03(2019)118"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)118'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)118'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)118'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2019)118'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      75 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2019)118 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N34c6beae4b884cddb864c3f8e3929dfe
    4 schema:citation sg:pub.10.1007/978-1-4684-7571-5_9
    5 sg:pub.10.1007/bf01238857
    6 sg:pub.10.1007/bf02568048
    7 sg:pub.10.1007/jhep01(2017)067
    8 sg:pub.10.1007/jhep01(2018)109
    9 sg:pub.10.1007/jhep01(2019)026
    10 sg:pub.10.1007/jhep02(2015)152
    11 sg:pub.10.1007/jhep02(2015)172
    12 sg:pub.10.1007/jhep02(2017)072
    13 sg:pub.10.1007/jhep02(2018)068
    14 sg:pub.10.1007/jhep02(2019)184
    15 sg:pub.10.1007/jhep03(2018)189
    16 sg:pub.10.1007/jhep04(2014)001
    17 sg:pub.10.1007/jhep04(2017)096
    18 sg:pub.10.1007/jhep04(2017)135
    19 sg:pub.10.1007/jhep10(2012)053
    20 sg:pub.10.1007/jhep10(2018)049
    21 sg:pub.10.1088/1126-6708/2001/10/005
    22 sg:pub.10.1088/1126-6708/2005/08/027
    23 schema:datePublished 2019-03-21
    24 schema:datePublishedReg 2019-03-21
    25 schema:description In general quantum field theories (QFTs), ordinary (0-form) global symmetries and 1-form symmetries can combine into 2-group global symmetries. We describe this phenomenon in detail using the language of symmetry defects. We exhibit a simple procedure to determine the (possible) 2-group global symmetry of a given QFT, and provide a classification of the related ’t Hooft anomalies (for symmetries not acting on spacetime). We also describe how QFTs can be coupled to extrinsic backgrounds for symmetry groups that differ from the intrinsic symmetry acting faithfully on the theory. Finally, we provide a variety of examples, ranging from TQFTs (gapped systems) to gapless QFTs. Along the way, we stress that the “obstruction to symmetry fractionalization” discussed in some condensed matter literature is really an instance of 2-group global symmetry.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N287cad29d7404c899d8b7cdc06297c7c
    29 Nb999796febbb4ed5b113cf240e39b8fb
    30 sg:journal.1052482
    31 schema:keywords TQFT
    32 anomalies
    33 background
    34 classification
    35 defects
    36 detail
    37 example
    38 extrinsic background
    39 field theory
    40 fractionalization
    41 general quantum field theory
    42 global symmetry
    43 group
    44 instances
    45 intrinsic symmetry
    46 language
    47 literature
    48 matter literature
    49 obstruction
    50 phenomenon
    51 procedure
    52 quantum field theory
    53 simple procedure
    54 symmetry
    55 symmetry defects
    56 symmetry fractionalization
    57 symmetry group
    58 t Hooft anomalies
    59 theory
    60 variety
    61 variety of examples
    62 way
    63 schema:name On 2-group global symmetries and their anomalies
    64 schema:pagination 118
    65 schema:productId Nb1152c9f02b142a9ae4a4dc25cc5521f
    66 Nc427fd9532b74c739d231aae94f3391f
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112965917
    68 https://doi.org/10.1007/jhep03(2019)118
    69 schema:sdDatePublished 2022-12-01T06:40
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N9c07e598fef64f39981c7fd489436dbd
    72 schema:url https://doi.org/10.1007/jhep03(2019)118
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N287cad29d7404c899d8b7cdc06297c7c schema:volumeNumber 2019
    77 rdf:type schema:PublicationVolume
    78 N34c6beae4b884cddb864c3f8e3929dfe rdf:first sg:person.011505670225.30
    79 rdf:rest N763ab45dfdc34c7fa9560e6e25728f0f
    80 N763ab45dfdc34c7fa9560e6e25728f0f rdf:first sg:person.015742405653.01
    81 rdf:rest Nf7c90881f12e438d87ac044c01fea799
    82 N9c07e598fef64f39981c7fd489436dbd schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Nb1152c9f02b142a9ae4a4dc25cc5521f schema:name doi
    85 schema:value 10.1007/jhep03(2019)118
    86 rdf:type schema:PropertyValue
    87 Nb999796febbb4ed5b113cf240e39b8fb schema:issueNumber 3
    88 rdf:type schema:PublicationIssue
    89 Nc427fd9532b74c739d231aae94f3391f schema:name dimensions_id
    90 schema:value pub.1112965917
    91 rdf:type schema:PropertyValue
    92 Nf7c90881f12e438d87ac044c01fea799 rdf:first sg:person.010670325432.17
    93 rdf:rest rdf:nil
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Pure Mathematics
    99 rdf:type schema:DefinedTerm
    100 sg:grant.4320404 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep03(2019)118
    101 rdf:type schema:MonetaryGrant
    102 sg:journal.1052482 schema:issn 1029-8479
    103 1126-6708
    104 schema:name Journal of High Energy Physics
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.010670325432.17 schema:affiliation grid-institutes:grid.16750.35
    108 schema:familyName Hsin
    109 schema:givenName Po-Shen
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670325432.17
    111 rdf:type schema:Person
    112 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.78989.37
    113 schema:familyName Benini
    114 schema:givenName Francesco
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
    116 rdf:type schema:Person
    117 sg:person.015742405653.01 schema:affiliation grid-institutes:grid.78989.37
    118 schema:familyName Córdova
    119 schema:givenName Clay
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015742405653.01
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-1-4684-7571-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011455159
    123 https://doi.org/10.1007/978-1-4684-7571-5_9
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01238857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034666835
    126 https://doi.org/10.1007/bf01238857
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf02568048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030596780
    129 https://doi.org/10.1007/bf02568048
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep01(2017)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024076455
    132 https://doi.org/10.1007/jhep01(2017)067
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep01(2018)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100668843
    135 https://doi.org/10.1007/jhep01(2018)109
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep01(2019)026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111251094
    138 https://doi.org/10.1007/jhep01(2019)026
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/jhep02(2015)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050438096
    141 https://doi.org/10.1007/jhep02(2015)152
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/jhep02(2015)172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045360529
    144 https://doi.org/10.1007/jhep02(2015)172
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/jhep02(2017)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083821326
    147 https://doi.org/10.1007/jhep02(2017)072
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/jhep02(2018)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101017410
    150 https://doi.org/10.1007/jhep02(2018)068
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/jhep02(2019)184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112464455
    153 https://doi.org/10.1007/jhep02(2019)184
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/jhep03(2018)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101888290
    156 https://doi.org/10.1007/jhep03(2018)189
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/jhep04(2014)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529369
    159 https://doi.org/10.1007/jhep04(2014)001
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/jhep04(2017)096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084933417
    162 https://doi.org/10.1007/jhep04(2017)096
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/jhep04(2017)135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085045747
    165 https://doi.org/10.1007/jhep04(2017)135
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/jhep10(2012)053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035305733
    168 https://doi.org/10.1007/jhep10(2012)053
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/jhep10(2018)049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107532968
    171 https://doi.org/10.1007/jhep10(2018)049
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1088/1126-6708/2001/10/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024644920
    174 https://doi.org/10.1088/1126-6708/2001/10/005
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1088/1126-6708/2005/08/027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041815571
    177 https://doi.org/10.1088/1126-6708/2005/08/027
    178 rdf:type schema:CreativeWork
    179 grid-institutes:grid.16750.35 schema:alternateName Physics Department, Princeton University, Princeton, NJ, U.S.A.
    180 schema:name Physics Department, Princeton University, Princeton, NJ, U.S.A.
    181 rdf:type schema:Organization
    182 grid-institutes:grid.78989.37 schema:alternateName School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A.
    183 schema:name INFN — Sezione di Trieste, via Valerio 2, Trieste, Italy
    184 SISSA, via Bonomea 265, Trieste, Italy
    185 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, U.S.A.
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...