Partition functions of web diagrams with an O7−-plane View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03-22

AUTHORS

Hirotaka Hayashi, Gianluca Zoccarato

ABSTRACT

We consider the computation of the topological string partition function for 5-brane web diagrams with an O7−-plane. Since upon quantum resolution of the orientifold plane these diagrams become non-toric web diagrams without the orientifold we are able to apply the topological vertex to obtain the Nekrasov partition function of the corresponding 5d theory. We apply this procedure to the case of 5d SU(N) theories with one hypermultiplet in the antisymmetric representation and to the case of 5d pure USp(2N) theories. For these cases we discuss the dictionary between parameters and moduli of the 5d gauge theory and lengths of 5-branes in the web diagram and moreover we perform comparison of the results obtained via application of the topological vertex and the one obtained via localisation techniques, finding in all instances we consider perfect agreement. More... »

PAGES

112

References to SciGraph publications

  • 2015-12-23. Brane webs, 5d gauge theories and 6dN=1,0 SCFT’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-24. Lifting 4d dualities to 5d in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-30. Non-Lagrangian theories from brane junctions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-07-07. Brane webs in the presence of an O5−-plane and 4d class S theories of type D in JOURNAL OF HIGH ENERGY PHYSICS
  • 2003-12-03. Topological strings and Nekrasov's formulas in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-19. Exact partition functions of Higgsed 5d TN theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-10-24. More on 5d descriptions of 6d SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-09-24. The Topological Vertex in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-01-03. Bootstrapping the superconformal index with surface defects in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-30. Exceptional indices in JOURNAL OF HIGH ENERGY PHYSICS
  • 1994-10. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-03-28. Matrix models, geometric engineering and elliptic genera in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-22. 5-dim superconformal index with enhanced En global symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-03-25. 5-brane webs, symmetry enhancement, and duality in 5d supersymmetric gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-06-14. Instanton counting on blowup. I. 4-dimensional pure gauge theory in INVENTIONES MATHEMATICAE
  • 2017-01-05. Duality walls and defects in 5d N=1 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-04-10. Fiber-base duality and global symmetry enhancement in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-11-18. 5d field theories and M theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-03-09. Five-branes, seven-branes and five-dimensional En field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-17. Instanton operators and symmetry enhancement in 5d supersymmetric USp, SO and exceptional gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-28. 5d fixed points from brane webs and O7-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-23. Equivalence of several descriptions for 6d SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Duality and enhancement of symmetry in 5d gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-04. S1/T2 compactifications of 6d N=1,0 theories and brane webs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-09-04. Topological vertex for Higgsed 5d TN theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-19. A new 5d description of 6d D-type minimal conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-16. Brane webs and O5-planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-31. Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-10-26. The refined topological vertex in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07-13. General instanton counting and 5d SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-04-20. M5-branes, toric diagrams and gauge theory duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-06-03. Topological strings and 5d TN partition functions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-03-15. The ABCDEFG of instantons and W-algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2005-05-17. Instanton counting, Macdonald function and the moduli space of D-branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-16. Discrete θ and the 5d superconformal index in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2017)112

    DOI

    http://dx.doi.org/10.1007/jhep03(2017)112

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084017789


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Te\u00f3rica and Instituto de F\u00edsica Te\u00f3rica UAM/CSIC, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049, Madrid, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5515.4", 
              "name": [
                "Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka, Kanagawa, Japan", 
                "Departamento de F\u00edsica Te\u00f3rica and Instituto de F\u00edsica Te\u00f3rica UAM/CSIC, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayashi", 
            "givenName": "Hirotaka", 
            "id": "sg:person.012413203443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Te\u00f3rica and Instituto de F\u00edsica Te\u00f3rica UAM/CSIC, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049, Madrid, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5515.4", 
              "name": [
                "Departamento de F\u00edsica Te\u00f3rica and Instituto de F\u00edsica Te\u00f3rica UAM/CSIC, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zoccarato", 
            "givenName": "Gianluca", 
            "id": "sg:person.07404157565.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404157565.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep05(2012)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042516890", 
              "https://doi.org/10.1007/jhep05(2012)145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/03/069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024408613", 
              "https://doi.org/10.1088/1126-6708/2008/03/069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004764583", 
              "https://doi.org/10.1007/jhep12(2014)116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014613199", 
              "https://doi.org/10.1007/jhep03(2016)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/01/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026223761", 
              "https://doi.org/10.1088/1126-6708/1998/01/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2003/12/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011536445", 
              "https://doi.org/10.1088/1126-6708/2003/12/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2005/05/039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031122920", 
              "https://doi.org/10.1088/1126-6708/2005/05/039"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028084103", 
              "https://doi.org/10.1007/jhep10(2016)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016122204", 
              "https://doi.org/10.1007/jhep07(2015)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028569668", 
              "https://doi.org/10.1007/jhep01(2014)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-005-0444-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046597097", 
              "https://doi.org/10.1007/s00222-005-0444-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/03/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003426598", 
              "https://doi.org/10.1088/1126-6708/1999/03/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000615357", 
              "https://doi.org/10.1007/jhep07(2015)087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2012)105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053174488", 
              "https://doi.org/10.1007/jhep04(2012)105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039046013", 
              "https://doi.org/10.1007/jhep07(2016)035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048020345", 
              "https://doi.org/10.1007/jhep10(2012)142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048309115", 
              "https://doi.org/10.1007/jhep01(2017)019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045230132", 
              "https://doi.org/10.1007/jhep01(2014)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029205466", 
              "https://doi.org/10.1007/jhep12(2015)163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043273302", 
              "https://doi.org/10.1007/jhep04(2015)052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047107529", 
              "https://doi.org/10.1007/jhep01(2015)093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2015)141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003376732", 
              "https://doi.org/10.1007/jhep04(2015)141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038757919", 
              "https://doi.org/10.1007/jhep03(2014)112"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004298067", 
              "https://doi.org/10.1007/jhep08(2015)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074205037", 
              "https://doi.org/10.1007/jhep01(2017)093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2015)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002934369", 
              "https://doi.org/10.1007/jhep09(2015)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025450706", 
              "https://doi.org/10.1007/jhep03(2012)045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038390804", 
              "https://doi.org/10.1007/jhep03(2016)024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/11/026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020762532", 
              "https://doi.org/10.1088/1126-6708/1999/11/026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014226650", 
              "https://doi.org/10.1007/jhep12(2015)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-004-1162-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047832310", 
              "https://doi.org/10.1007/s00220-004-1162-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2014)014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041020676", 
              "https://doi.org/10.1007/jhep06(2014)014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2015)167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037200750", 
              "https://doi.org/10.1007/jhep07(2015)167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/10/069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012019814", 
              "https://doi.org/10.1088/1126-6708/2009/10/069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030213861", 
              "https://doi.org/10.1007/jhep01(2013)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049578045", 
              "https://doi.org/10.1007/bf02099774"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-22", 
        "datePublishedReg": "2017-03-22", 
        "description": "We consider the computation of the topological string partition function for 5-brane web diagrams with an O7\u2212-plane. Since upon quantum resolution of the orientifold plane these diagrams become non-toric web diagrams without the orientifold we are able to apply the topological vertex to obtain the Nekrasov partition function of the corresponding 5d theory. We apply this procedure to the case of 5d SU(N) theories with one hypermultiplet in the antisymmetric representation and to the case of 5d pure USp(2N) theories. For these cases we discuss the dictionary between parameters and moduli of the 5d gauge theory and lengths of 5-branes in the web diagram and moreover we perform comparison of the results obtained via application of the topological vertex and the one obtained via localisation techniques, finding in all instances we consider perfect agreement.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep03(2017)112", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "topological string partition function", 
          "string partition function", 
          "partition function", 
          "topological vertex", 
          "orientifold planes", 
          "Nekrasov partition function", 
          "antisymmetric representation", 
          "gauge theory", 
          "web diagrams", 
          "quantum resolution", 
          "theory", 
          "computation", 
          "function", 
          "diagram", 
          "vertices", 
          "hypermultiplets", 
          "representation", 
          "perfect agreement", 
          "procedure", 
          "cases", 
          "dictionary", 
          "parameters", 
          "applications", 
          "one", 
          "localisation techniques", 
          "technique", 
          "instances", 
          "plane", 
          "length", 
          "comparison", 
          "results", 
          "agreement", 
          "resolution", 
          "modulus", 
          "non-toric web diagrams"
        ], 
        "name": "Partition functions of web diagrams with an O7\u2212-plane", 
        "pagination": "112", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084017789"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2017)112"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2017)112", 
          "https://app.dimensions.ai/details/publication/pub.1084017789"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_728.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep03(2017)112"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2017)112'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2017)112'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2017)112'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2017)112'


     

    This table displays all metadata directly associated to this object as RDF triples.

    253 TRIPLES      22 PREDICATES      98 URIs      52 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2017)112 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7b79942d8eb644b5a6137b82ac6e64f5
    4 schema:citation sg:pub.10.1007/bf02099774
    5 sg:pub.10.1007/jhep01(2013)022
    6 sg:pub.10.1007/jhep01(2014)079
    7 sg:pub.10.1007/jhep01(2014)175
    8 sg:pub.10.1007/jhep01(2015)093
    9 sg:pub.10.1007/jhep01(2017)019
    10 sg:pub.10.1007/jhep01(2017)093
    11 sg:pub.10.1007/jhep03(2012)045
    12 sg:pub.10.1007/jhep03(2014)112
    13 sg:pub.10.1007/jhep03(2016)024
    14 sg:pub.10.1007/jhep03(2016)109
    15 sg:pub.10.1007/jhep04(2012)105
    16 sg:pub.10.1007/jhep04(2015)052
    17 sg:pub.10.1007/jhep04(2015)141
    18 sg:pub.10.1007/jhep05(2012)145
    19 sg:pub.10.1007/jhep06(2010)100
    20 sg:pub.10.1007/jhep06(2014)014
    21 sg:pub.10.1007/jhep07(2015)063
    22 sg:pub.10.1007/jhep07(2015)087
    23 sg:pub.10.1007/jhep07(2015)167
    24 sg:pub.10.1007/jhep07(2016)035
    25 sg:pub.10.1007/jhep08(2015)097
    26 sg:pub.10.1007/jhep09(2015)023
    27 sg:pub.10.1007/jhep10(2012)142
    28 sg:pub.10.1007/jhep10(2016)126
    29 sg:pub.10.1007/jhep12(2014)116
    30 sg:pub.10.1007/jhep12(2015)157
    31 sg:pub.10.1007/jhep12(2015)163
    32 sg:pub.10.1007/s00220-004-1162-z
    33 sg:pub.10.1007/s00222-005-0444-1
    34 sg:pub.10.1088/1126-6708/1998/01/002
    35 sg:pub.10.1088/1126-6708/1999/03/006
    36 sg:pub.10.1088/1126-6708/1999/11/026
    37 sg:pub.10.1088/1126-6708/2003/12/006
    38 sg:pub.10.1088/1126-6708/2005/05/039
    39 sg:pub.10.1088/1126-6708/2008/03/069
    40 sg:pub.10.1088/1126-6708/2009/09/052
    41 sg:pub.10.1088/1126-6708/2009/10/069
    42 schema:datePublished 2017-03-22
    43 schema:datePublishedReg 2017-03-22
    44 schema:description We consider the computation of the topological string partition function for 5-brane web diagrams with an O7−-plane. Since upon quantum resolution of the orientifold plane these diagrams become non-toric web diagrams without the orientifold we are able to apply the topological vertex to obtain the Nekrasov partition function of the corresponding 5d theory. We apply this procedure to the case of 5d SU(N) theories with one hypermultiplet in the antisymmetric representation and to the case of 5d pure USp(2N) theories. For these cases we discuss the dictionary between parameters and moduli of the 5d gauge theory and lengths of 5-branes in the web diagram and moreover we perform comparison of the results obtained via application of the topological vertex and the one obtained via localisation techniques, finding in all instances we consider perfect agreement.
    45 schema:genre article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N46d81862c6bc40f28f9c78c43a29c4f8
    49 Nfe8b3a110142484f9790a0d58046cf9d
    50 sg:journal.1052482
    51 schema:keywords Nekrasov partition function
    52 agreement
    53 antisymmetric representation
    54 applications
    55 cases
    56 comparison
    57 computation
    58 diagram
    59 dictionary
    60 function
    61 gauge theory
    62 hypermultiplets
    63 instances
    64 length
    65 localisation techniques
    66 modulus
    67 non-toric web diagrams
    68 one
    69 orientifold planes
    70 parameters
    71 partition function
    72 perfect agreement
    73 plane
    74 procedure
    75 quantum resolution
    76 representation
    77 resolution
    78 results
    79 string partition function
    80 technique
    81 theory
    82 topological string partition function
    83 topological vertex
    84 vertices
    85 web diagrams
    86 schema:name Partition functions of web diagrams with an O7−-plane
    87 schema:pagination 112
    88 schema:productId N3ee5c9c051c94d1ba3cf9187f01db342
    89 Nf5a9740c081642f7b1f0cf5250e87ffe
    90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017789
    91 https://doi.org/10.1007/jhep03(2017)112
    92 schema:sdDatePublished 2022-01-01T18:41
    93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    94 schema:sdPublisher N4e2ef08d6ce34e99b048e2c6a6b6d297
    95 schema:url https://doi.org/10.1007/jhep03(2017)112
    96 sgo:license sg:explorer/license/
    97 sgo:sdDataset articles
    98 rdf:type schema:ScholarlyArticle
    99 N3ee5c9c051c94d1ba3cf9187f01db342 schema:name dimensions_id
    100 schema:value pub.1084017789
    101 rdf:type schema:PropertyValue
    102 N46d81862c6bc40f28f9c78c43a29c4f8 schema:issueNumber 3
    103 rdf:type schema:PublicationIssue
    104 N4e2ef08d6ce34e99b048e2c6a6b6d297 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N66cf91061d5042399be483f370b1a8bd rdf:first sg:person.07404157565.80
    107 rdf:rest rdf:nil
    108 N7b79942d8eb644b5a6137b82ac6e64f5 rdf:first sg:person.012413203443.40
    109 rdf:rest N66cf91061d5042399be483f370b1a8bd
    110 Nf5a9740c081642f7b1f0cf5250e87ffe schema:name doi
    111 schema:value 10.1007/jhep03(2017)112
    112 rdf:type schema:PropertyValue
    113 Nfe8b3a110142484f9790a0d58046cf9d schema:volumeNumber 2017
    114 rdf:type schema:PublicationVolume
    115 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Mathematical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Pure Mathematics
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1052482 schema:issn 1029-8479
    122 1126-6708
    123 schema:name Journal of High Energy Physics
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.012413203443.40 schema:affiliation grid-institutes:grid.5515.4
    127 schema:familyName Hayashi
    128 schema:givenName Hirotaka
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40
    130 rdf:type schema:Person
    131 sg:person.07404157565.80 schema:affiliation grid-institutes:grid.5515.4
    132 schema:familyName Zoccarato
    133 schema:givenName Gianluca
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07404157565.80
    135 rdf:type schema:Person
    136 sg:pub.10.1007/bf02099774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049578045
    137 https://doi.org/10.1007/bf02099774
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep01(2013)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030213861
    140 https://doi.org/10.1007/jhep01(2013)022
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/jhep01(2014)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028569668
    143 https://doi.org/10.1007/jhep01(2014)079
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep01(2014)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045230132
    146 https://doi.org/10.1007/jhep01(2014)175
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep01(2015)093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047107529
    149 https://doi.org/10.1007/jhep01(2015)093
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep01(2017)019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048309115
    152 https://doi.org/10.1007/jhep01(2017)019
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep01(2017)093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074205037
    155 https://doi.org/10.1007/jhep01(2017)093
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep03(2012)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450706
    158 https://doi.org/10.1007/jhep03(2012)045
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep03(2014)112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038757919
    161 https://doi.org/10.1007/jhep03(2014)112
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep03(2016)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390804
    164 https://doi.org/10.1007/jhep03(2016)024
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep03(2016)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014613199
    167 https://doi.org/10.1007/jhep03(2016)109
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep04(2012)105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053174488
    170 https://doi.org/10.1007/jhep04(2012)105
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep04(2015)052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043273302
    173 https://doi.org/10.1007/jhep04(2015)052
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep04(2015)141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376732
    176 https://doi.org/10.1007/jhep04(2015)141
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep05(2012)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042516890
    179 https://doi.org/10.1007/jhep05(2012)145
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    182 https://doi.org/10.1007/jhep06(2010)100
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep06(2014)014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041020676
    185 https://doi.org/10.1007/jhep06(2014)014
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep07(2015)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016122204
    188 https://doi.org/10.1007/jhep07(2015)063
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep07(2015)087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000615357
    191 https://doi.org/10.1007/jhep07(2015)087
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep07(2015)167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037200750
    194 https://doi.org/10.1007/jhep07(2015)167
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep07(2016)035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039046013
    197 https://doi.org/10.1007/jhep07(2016)035
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep08(2015)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004298067
    200 https://doi.org/10.1007/jhep08(2015)097
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep09(2015)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002934369
    203 https://doi.org/10.1007/jhep09(2015)023
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/jhep10(2012)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048020345
    206 https://doi.org/10.1007/jhep10(2012)142
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/jhep10(2016)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028084103
    209 https://doi.org/10.1007/jhep10(2016)126
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/jhep12(2014)116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004764583
    212 https://doi.org/10.1007/jhep12(2014)116
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/jhep12(2015)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014226650
    215 https://doi.org/10.1007/jhep12(2015)157
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/jhep12(2015)163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029205466
    218 https://doi.org/10.1007/jhep12(2015)163
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00220-004-1162-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1047832310
    221 https://doi.org/10.1007/s00220-004-1162-z
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00222-005-0444-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046597097
    224 https://doi.org/10.1007/s00222-005-0444-1
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
    227 https://doi.org/10.1088/1126-6708/1998/01/002
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1088/1126-6708/1999/03/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003426598
    230 https://doi.org/10.1088/1126-6708/1999/03/006
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1088/1126-6708/1999/11/026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020762532
    233 https://doi.org/10.1088/1126-6708/1999/11/026
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1088/1126-6708/2003/12/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011536445
    236 https://doi.org/10.1088/1126-6708/2003/12/006
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1088/1126-6708/2005/05/039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031122920
    239 https://doi.org/10.1088/1126-6708/2005/05/039
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1088/1126-6708/2008/03/069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024408613
    242 https://doi.org/10.1088/1126-6708/2008/03/069
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    245 https://doi.org/10.1088/1126-6708/2009/09/052
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1088/1126-6708/2009/10/069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012019814
    248 https://doi.org/10.1088/1126-6708/2009/10/069
    249 rdf:type schema:CreativeWork
    250 grid-institutes:grid.5515.4 schema:alternateName Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
    251 schema:name Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
    252 Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka, Kanagawa, Japan
    253 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...