Di-photon excess illuminates dark matter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03

AUTHORS

Mihailo Backović, Alberto Mariotti, Diego Redigolo

ABSTRACT

We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼ 300 GeV dark matter particle and ∼ 750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario. More... »

PAGES

157

References to SciGraph publications

  • 2009-09-07. Dark matter and pseudo-flat directions in weakly coupled SUSY breaking sectors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-07. Pseudomoduli dark matter and quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-11. Singlet-like Higgs bosons at present and future colliders in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08. A modified naturalness principle and its experimental tests in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-07. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s=8TeV with the ATLAS detector in THE EUROPEAN PHYSICAL JOURNAL C
  • 2009-09-14. From linear SUSY to constrained superfields in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06. MadGraph 5: going beyond in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-03. WIMP dark matter through the dilaton portal in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08. A simplified model for dark matter interacting primarily with gluons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05. Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at s=8TeV in THE EUROPEAN PHYSICAL JOURNAL C
  • 2000-01-07. Gaugino mediated supersymmetry breaking in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-08. Pseudomoduli dark matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-29. Singlet fermionic dark matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-01. Search for an additional, heavy Higgs boson in the H→ZZ decay channel at s=8TeV in pp collision data with the ATLAS detector in THE EUROPEAN PHYSICAL JOURNAL C
  • 2014-07. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2016)157

    DOI

    http://dx.doi.org/10.1007/jhep03(2016)157

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016860573


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Catholique de Louvain", 
              "id": "https://www.grid.ac/institutes/grid.7942.8", 
              "name": [
                "Center for Cosmology, Particle Physics and Phenomenology \u2014 CP3, Universite Catholique de Louvain, Louvain-la-neuve, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Backovi\u0107", 
            "givenName": "Mihailo", 
            "id": "sg:person.015674370757.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674370757.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Solvay Institutes", 
              "id": "https://www.grid.ac/institutes/grid.425224.7", 
              "name": [
                "Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium", 
                "International Solvay Institutes, Pleinlaan 2, B-1050, Brussels, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mariotti", 
            "givenName": "Alberto", 
            "id": "sg:person.016216715237.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216715237.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Theoretical and High Energy Physics", 
              "id": "https://www.grid.ac/institutes/grid.463942.e", 
              "name": [
                "Laboratoire de Physique Th\u00e9orique et Hautes Energies, CNRS UMR 7589, Universite\u00e9 Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Redigolo", 
            "givenName": "Diego", 
            "id": "sg:person.014662454117.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662454117.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.dark.2014.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001010586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.083521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002200694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.083521", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002200694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2015)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005141419", 
              "https://doi.org/10.1007/jhep03(2015)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dark.2015.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008180628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dark.2015.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008180628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dark.2015.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008180628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dark.2015.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008180628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2012.07.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010685592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2013.10.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011264740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011851581", 
              "https://doi.org/10.1007/jhep11(2015)158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2016.01.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011874786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2016.01.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011874786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014691308", 
              "https://doi.org/10.1007/jhep08(2015)064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.87.112003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016289106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.87.112003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016289106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dark.2013.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018013645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-015-3820-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018678097", 
              "https://doi.org/10.1140/epjc/s10052-015-3820-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-015-3820-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018678097", 
              "https://doi.org/10.1140/epjc/s10052-015-3820-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2014.04.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021189713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021571759", 
              "https://doi.org/10.1088/1126-6708/2009/09/041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021571759", 
              "https://doi.org/10.1088/1126-6708/2009/09/041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2013)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024651549", 
              "https://doi.org/10.1007/jhep08(2013)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2014)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024796629", 
              "https://doi.org/10.1007/jhep07(2014)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.65.015003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025662096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.65.015003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025662096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025716969", 
              "https://doi.org/10.1088/1126-6708/2008/05/100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2014.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026616319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027267265", 
              "https://doi.org/10.1088/1126-6708/2009/09/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027267265", 
              "https://doi.org/10.1088/1126-6708/2009/09/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029148236", 
              "https://doi.org/10.1007/jhep06(2011)128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.091303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031172635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.112.091303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031172635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2010.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032496403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2010)072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033060890", 
              "https://doi.org/10.1007/jhep07(2010)072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035924085", 
              "https://doi.org/10.1088/1126-6708/2009/09/066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035924085", 
              "https://doi.org/10.1088/1126-6708/2009/09/066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2016.01.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037475690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.052009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038671992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.052009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038671992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-015-3517-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038960361", 
              "https://doi.org/10.1140/epjc/s10052-015-3517-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/01/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039040740", 
              "https://doi.org/10.1088/1126-6708/2000/01/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2013.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039303306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-015-3451-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040618630", 
              "https://doi.org/10.1140/epjc/s10052-015-3451-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.231802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043991090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.231802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043991090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2015.09.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050123919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2015.09.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050123919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(99)00044-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053487569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.77.242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060455819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.77.242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060455819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.122002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060710017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.91.122002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060710017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.015017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.015017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.035002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.035002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060711791"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-03", 
        "datePublishedReg": "2016-03-01", 
        "description": "We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with \u223c 300 GeV dark matter particle and \u223c 750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep03(2016)157", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2016"
          }
        ], 
        "name": "Di-photon excess illuminates dark matter", 
        "pagination": "157", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "50559505519ec06723fe76f2013d1734e5fcbee517b3e3e6cf640cdadc611016"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2016)157"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016860573"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2016)157", 
          "https://app.dimensions.ai/details/publication/pub.1016860573"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2FJHEP03%282016%29157"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)157'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)157'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)157'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)157'


     

    This table displays all metadata directly associated to this object as RDF triples.

    211 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2016)157 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N4b78bb83f7c74b5cab70f0a44cf0a446
    4 schema:citation sg:pub.10.1007/jhep03(2015)099
    5 sg:pub.10.1007/jhep06(2011)128
    6 sg:pub.10.1007/jhep07(2010)072
    7 sg:pub.10.1007/jhep07(2014)079
    8 sg:pub.10.1007/jhep08(2013)022
    9 sg:pub.10.1007/jhep08(2015)064
    10 sg:pub.10.1007/jhep11(2015)158
    11 sg:pub.10.1088/1126-6708/2000/01/003
    12 sg:pub.10.1088/1126-6708/2008/05/100
    13 sg:pub.10.1088/1126-6708/2009/09/041
    14 sg:pub.10.1088/1126-6708/2009/09/046
    15 sg:pub.10.1088/1126-6708/2009/09/066
    16 sg:pub.10.1140/epjc/s10052-015-3451-4
    17 sg:pub.10.1140/epjc/s10052-015-3517-3
    18 sg:pub.10.1140/epjc/s10052-015-3820-z
    19 https://doi.org/10.1016/j.cpc.2013.10.016
    20 https://doi.org/10.1016/j.cpc.2014.04.012
    21 https://doi.org/10.1016/j.dark.2013.06.001
    22 https://doi.org/10.1016/j.dark.2014.04.001
    23 https://doi.org/10.1016/j.dark.2015.09.001
    24 https://doi.org/10.1016/j.nuclphysb.2013.02.001
    25 https://doi.org/10.1016/j.physletb.2012.07.017
    26 https://doi.org/10.1016/j.physletb.2014.10.002
    27 https://doi.org/10.1016/j.physletb.2015.09.062
    28 https://doi.org/10.1016/j.physletb.2016.01.026
    29 https://doi.org/10.1016/j.physletb.2016.01.055
    30 https://doi.org/10.1016/j.physrep.2010.07.001
    31 https://doi.org/10.1016/s0550-3213(99)00044-9
    32 https://doi.org/10.1103/physrev.77.242
    33 https://doi.org/10.1103/physrevd.65.015003
    34 https://doi.org/10.1103/physrevd.86.083521
    35 https://doi.org/10.1103/physrevd.87.112003
    36 https://doi.org/10.1103/physrevd.91.052009
    37 https://doi.org/10.1103/physrevd.91.122002
    38 https://doi.org/10.1103/physrevd.93.015017
    39 https://doi.org/10.1103/physrevd.93.035002
    40 https://doi.org/10.1103/physrevlett.112.091303
    41 https://doi.org/10.1103/physrevlett.96.231802
    42 schema:datePublished 2016-03
    43 schema:datePublishedReg 2016-03-01
    44 schema:description We propose a simplified model of dark matter with a scalar mediator to accommodate the di-photon excess recently observed by the ATLAS and CMS collaborations. Decays of the resonance into dark matter can easily account for a relatively large width of the scalar resonance, while the magnitude of the total width combined with the constraint on dark matter relic density leads to sharp predictions on the parameters of the Dark Sector. Under the assumption of a rather large width, the model predicts a signal consistent with ∼ 300 GeV dark matter particle and ∼ 750 GeV scalar mediator in channels with large missing energy. This prediction is not yet severely bounded by LHC Run I searches and will be accessible at the LHC Run II in the jet plus missing energy channel with more luminosity. Our analysis also considers astro-physical constraints, pointing out that future direct detection experiments will be sensitive to this scenario.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree true
    48 schema:isPartOf N5a5a5820ed3c4106aeb0df3561dce8cc
    49 N6c6f3cd20b0f4e439c73421f9ed32220
    50 sg:journal.1052482
    51 schema:name Di-photon excess illuminates dark matter
    52 schema:pagination 157
    53 schema:productId Na7199a73b3954b6d9eb3c3fe3e876448
    54 Nb08837a830b243e487337827079652ea
    55 Nf027aa5c1f3549a1be2f9450397314e6
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016860573
    57 https://doi.org/10.1007/jhep03(2016)157
    58 schema:sdDatePublished 2019-04-11T02:00
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N28f9e45fbbd345ffadb47601cd2eddeb
    61 schema:url http://link.springer.com/10.1007%2FJHEP03%282016%29157
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N28f9e45fbbd345ffadb47601cd2eddeb schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N4b78bb83f7c74b5cab70f0a44cf0a446 rdf:first sg:person.015674370757.91
    68 rdf:rest Na0bf96e46a514222b2e852fc50c0f727
    69 N54252d8bfae940a296498cfa80bc63bd rdf:first sg:person.014662454117.48
    70 rdf:rest rdf:nil
    71 N5a5a5820ed3c4106aeb0df3561dce8cc schema:issueNumber 3
    72 rdf:type schema:PublicationIssue
    73 N6c6f3cd20b0f4e439c73421f9ed32220 schema:volumeNumber 2016
    74 rdf:type schema:PublicationVolume
    75 Na0bf96e46a514222b2e852fc50c0f727 rdf:first sg:person.016216715237.67
    76 rdf:rest N54252d8bfae940a296498cfa80bc63bd
    77 Na7199a73b3954b6d9eb3c3fe3e876448 schema:name readcube_id
    78 schema:value 50559505519ec06723fe76f2013d1734e5fcbee517b3e3e6cf640cdadc611016
    79 rdf:type schema:PropertyValue
    80 Nb08837a830b243e487337827079652ea schema:name doi
    81 schema:value 10.1007/jhep03(2016)157
    82 rdf:type schema:PropertyValue
    83 Nf027aa5c1f3549a1be2f9450397314e6 schema:name dimensions_id
    84 schema:value pub.1016860573
    85 rdf:type schema:PropertyValue
    86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Physical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Astronomical and Space Sciences
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1052482 schema:issn 1029-8479
    93 1126-6708
    94 schema:name Journal of High Energy Physics
    95 rdf:type schema:Periodical
    96 sg:person.014662454117.48 schema:affiliation https://www.grid.ac/institutes/grid.463942.e
    97 schema:familyName Redigolo
    98 schema:givenName Diego
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662454117.48
    100 rdf:type schema:Person
    101 sg:person.015674370757.91 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
    102 schema:familyName Backović
    103 schema:givenName Mihailo
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674370757.91
    105 rdf:type schema:Person
    106 sg:person.016216715237.67 schema:affiliation https://www.grid.ac/institutes/grid.425224.7
    107 schema:familyName Mariotti
    108 schema:givenName Alberto
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016216715237.67
    110 rdf:type schema:Person
    111 sg:pub.10.1007/jhep03(2015)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005141419
    112 https://doi.org/10.1007/jhep03(2015)099
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep06(2011)128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029148236
    115 https://doi.org/10.1007/jhep06(2011)128
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep07(2010)072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033060890
    118 https://doi.org/10.1007/jhep07(2010)072
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/jhep07(2014)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024796629
    121 https://doi.org/10.1007/jhep07(2014)079
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/jhep08(2013)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024651549
    124 https://doi.org/10.1007/jhep08(2013)022
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/jhep08(2015)064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014691308
    127 https://doi.org/10.1007/jhep08(2015)064
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep11(2015)158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011851581
    130 https://doi.org/10.1007/jhep11(2015)158
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1088/1126-6708/2000/01/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039040740
    133 https://doi.org/10.1088/1126-6708/2000/01/003
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1088/1126-6708/2008/05/100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025716969
    136 https://doi.org/10.1088/1126-6708/2008/05/100
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1088/1126-6708/2009/09/041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021571759
    139 https://doi.org/10.1088/1126-6708/2009/09/041
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1088/1126-6708/2009/09/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027267265
    142 https://doi.org/10.1088/1126-6708/2009/09/046
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1088/1126-6708/2009/09/066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035924085
    145 https://doi.org/10.1088/1126-6708/2009/09/066
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1140/epjc/s10052-015-3451-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040618630
    148 https://doi.org/10.1140/epjc/s10052-015-3451-4
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1140/epjc/s10052-015-3517-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038960361
    151 https://doi.org/10.1140/epjc/s10052-015-3517-3
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1140/epjc/s10052-015-3820-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018678097
    154 https://doi.org/10.1140/epjc/s10052-015-3820-z
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.cpc.2013.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011264740
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.cpc.2014.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021189713
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.dark.2013.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018013645
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.dark.2014.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001010586
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.dark.2015.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008180628
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.nuclphysb.2013.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039303306
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.physletb.2012.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010685592
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.physletb.2014.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026616319
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.physletb.2015.09.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050123919
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.physletb.2016.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011874786
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.physletb.2016.01.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037475690
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.physrep.2010.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032496403
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0550-3213(99)00044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053487569
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1103/physrev.77.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060455819
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1103/physrevd.65.015003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025662096
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/physrevd.86.083521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002200694
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physrevd.87.112003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016289106
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physrevd.91.052009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038671992
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physrevd.91.122002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060710017
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/physrevd.93.015017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060711558
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1103/physrevd.93.035002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060711791
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1103/physrevlett.112.091303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031172635
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1103/physrevlett.96.231802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043991090
    201 rdf:type schema:CreativeWork
    202 https://www.grid.ac/institutes/grid.425224.7 schema:alternateName International Solvay Institutes
    203 schema:name International Solvay Institutes, Pleinlaan 2, B-1050, Brussels, Belgium
    204 Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.463942.e schema:alternateName Laboratory of Theoretical and High Energy Physics
    207 schema:name Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, Universiteé Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris, France
    208 rdf:type schema:Organization
    209 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
    210 schema:name Center for Cosmology, Particle Physics and Phenomenology — CP3, Universite Catholique de Louvain, Louvain-la-neuve, Belgium
    211 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...