Two-loop conformal generators for leading-twist operators in QCD View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03

AUTHORS

V.M. Braun, A.N. Manashov, S. Moch, M. Strohmaier

ABSTRACT

QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct three operators that commute with the evolution kernel and form an SL(2) algebra, i.e. they satisfy (exactly) the SL(2) commutation relations. In this paper we find explicit expressions for these operators to two-loop accuracy going over to QCD in non-integer d = 4 − 2ϵ space-time dimensions at the intermediate stage. In this way conformal symmetry of QCD is restored on quantum level at the specially chosen (critical) value of the coupling, and at the same time the theory is regularized allowing one to use the standard renormalization procedure for the relevant Feynman diagrams. Quantum corrections to conformal generators in d = 4 − 2ϵ effectively correspond to the conformal symmetry breaking in the physical theory in four dimensions and the SL(2) commutation relations lead to nontrivial constraints on the renormalization group equations for composite operators. This approach is valid to all orders in perturbation theory and the result includes automatically all terms that can be identified as due to a nonvanishing QCD β-function (in the physical theory in four dimensions). Our result can be used to derive three-loop evolution equations for flavor-nonsinglet quark-antiquark operators including mixing with the operators containing total derivatives. These equations govern, e.g., the scale dependence of generalized hadron parton distributions and light-cone meson distribution amplitudes. More... »

PAGES

142

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep03(2016)142

DOI

http://dx.doi.org/10.1007/jhep03(2016)142

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026029510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Regensburg", 
          "id": "https://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braun", 
        "givenName": "V.M.", 
        "id": "sg:person.01264313435.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264313435.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Regensburg", 
          "id": "https://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Hamburg, D-22761, Hamburg, Germany", 
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manashov", 
        "givenName": "A.N.", 
        "id": "sg:person.011055347723.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011055347723.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Hamburg, D-22761, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moch", 
        "givenName": "S.", 
        "id": "sg:person.014202067175.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202067175.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Regensburg", 
          "id": "https://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strohmaier", 
        "givenName": "M.", 
        "id": "sg:person.015406775513.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406775513.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00677-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002269597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00265-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002940580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2004.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003168830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00012-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004977263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00012-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004977263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.58.054005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006302900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.58.054005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006302900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(74)90076-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009595522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(74)90076-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009595522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01555504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015019737", 
          "https://doi.org/10.1007/bf01555504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01555504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015019737", 
          "https://doi.org/10.1007/bf01555504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00310-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021210634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(92)91086-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023314670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(92)91086-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023314670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2014)076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029164291", 
          "https://doi.org/10.1007/jhep10(2014)076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2014)076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029164291", 
          "https://doi.org/10.1007/jhep10(2014)076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(76)90156-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031488824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0146-6410(03)90004-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031568114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(99)00573-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2004.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035862540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9780203483565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036907866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-013-2544-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039450862", 
          "https://doi.org/10.1140/epjc/s10052-013-2544-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2014.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042414606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90628-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044683029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90628-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044683029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/02/055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045850643", 
          "https://doi.org/10.1088/1126-6708/2006/02/055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2006/02/055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045850643", 
          "https://doi.org/10.1088/1126-6708/2006/02/055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2014.05.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047351996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-2693(97)01390-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048378879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90168-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049341437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90168-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049341437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051932762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90035-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051932762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.2525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060701874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.49.2525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060701874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511622656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098684190"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct three operators that commute with the evolution kernel and form an SL(2) algebra, i.e. they satisfy (exactly) the SL(2) commutation relations. In this paper we find explicit expressions for these operators to two-loop accuracy going over to QCD in non-integer d = 4 \u2212 2\u03f5 space-time dimensions at the intermediate stage. In this way conformal symmetry of QCD is restored on quantum level at the specially chosen (critical) value of the coupling, and at the same time the theory is regularized allowing one to use the standard renormalization procedure for the relevant Feynman diagrams. Quantum corrections to conformal generators in d = 4 \u2212 2\u03f5 effectively correspond to the conformal symmetry breaking in the physical theory in four dimensions and the SL(2) commutation relations lead to nontrivial constraints on the renormalization group equations for composite operators. This approach is valid to all orders in perturbation theory and the result includes automatically all terms that can be identified as due to a nonvanishing QCD \u03b2-function (in the physical theory in four dimensions). Our result can be used to derive three-loop evolution equations for flavor-nonsinglet quark-antiquark operators including mixing with the operators containing total derivatives. These equations govern, e.g., the scale dependence of generalized hadron parton distributions and light-cone meson distribution amplitudes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep03(2016)142", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2016"
      }
    ], 
    "name": "Two-loop conformal generators for leading-twist operators in QCD", 
    "pagination": "142", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c009595a4d8c990392cf4c1471cb1fef8536b6887eb04f3572a7d9ad3e9b8fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep03(2016)142"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026029510"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep03(2016)142", 
      "https://app.dimensions.ai/details/publication/pub.1026029510"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/JHEP03(2016)142"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)142'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)142'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)142'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2016)142'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep03(2016)142 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N353993370e2f42209d4763407cfaad8c
4 schema:citation sg:pub.10.1007/bf01555504
5 sg:pub.10.1007/jhep10(2014)076
6 sg:pub.10.1088/1126-6708/2006/02/055
7 sg:pub.10.1140/epjc/s10052-013-2544-1
8 https://doi.org/10.1016/0003-4916(76)90156-1
9 https://doi.org/10.1016/0370-2693(92)91086-o
10 https://doi.org/10.1016/0550-3213(74)90076-5
11 https://doi.org/10.1016/0550-3213(82)90035-9
12 https://doi.org/10.1016/0550-3213(85)90628-5
13 https://doi.org/10.1016/0550-3213(89)90168-5
14 https://doi.org/10.1016/j.nuclphysb.2004.03.030
15 https://doi.org/10.1016/j.nuclphysb.2004.04.024
16 https://doi.org/10.1016/j.physletb.2014.05.037
17 https://doi.org/10.1016/j.physrep.2014.12.003
18 https://doi.org/10.1016/s0146-6410(03)90004-4
19 https://doi.org/10.1016/s0370-2693(97)01390-7
20 https://doi.org/10.1016/s0370-2693(99)00573-0
21 https://doi.org/10.1016/s0550-3213(00)00012-2
22 https://doi.org/10.1016/s0550-3213(98)00310-1
23 https://doi.org/10.1016/s0550-3213(98)00677-4
24 https://doi.org/10.1016/s0550-3213(99)00265-5
25 https://doi.org/10.1017/cbo9780511622656
26 https://doi.org/10.1103/physrevd.49.2525
27 https://doi.org/10.1103/physrevd.58.054005
28 https://doi.org/10.1201/9780203483565
29 schema:datePublished 2016-03
30 schema:datePublishedReg 2016-03-01
31 schema:description QCD evolution equations in minimal subtraction schemes have a hidden symmetry: one can construct three operators that commute with the evolution kernel and form an SL(2) algebra, i.e. they satisfy (exactly) the SL(2) commutation relations. In this paper we find explicit expressions for these operators to two-loop accuracy going over to QCD in non-integer d = 4 − 2ϵ space-time dimensions at the intermediate stage. In this way conformal symmetry of QCD is restored on quantum level at the specially chosen (critical) value of the coupling, and at the same time the theory is regularized allowing one to use the standard renormalization procedure for the relevant Feynman diagrams. Quantum corrections to conformal generators in d = 4 − 2ϵ effectively correspond to the conformal symmetry breaking in the physical theory in four dimensions and the SL(2) commutation relations lead to nontrivial constraints on the renormalization group equations for composite operators. This approach is valid to all orders in perturbation theory and the result includes automatically all terms that can be identified as due to a nonvanishing QCD β-function (in the physical theory in four dimensions). Our result can be used to derive three-loop evolution equations for flavor-nonsinglet quark-antiquark operators including mixing with the operators containing total derivatives. These equations govern, e.g., the scale dependence of generalized hadron parton distributions and light-cone meson distribution amplitudes.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N11ec1c345253459babe09aeceb2cceb3
36 N52e1792b5b374eb0a00e5409aa92a6d2
37 sg:journal.1052482
38 schema:name Two-loop conformal generators for leading-twist operators in QCD
39 schema:pagination 142
40 schema:productId N4a745bf67db54394b80b66ce79489868
41 N581b6070967945519e3e3ce1e16bd0a9
42 Na799b9e883d5419a903d5a34ce70f380
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026029510
44 https://doi.org/10.1007/jhep03(2016)142
45 schema:sdDatePublished 2019-04-10T19:50
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nba82feaa1ff54ce990350d481573d163
48 schema:url http://link.springer.com/10.1007/JHEP03(2016)142
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N11ec1c345253459babe09aeceb2cceb3 schema:issueNumber 3
53 rdf:type schema:PublicationIssue
54 N353993370e2f42209d4763407cfaad8c rdf:first sg:person.01264313435.12
55 rdf:rest Nf307332dbfa544a9b66fa701c6475ee0
56 N4a745bf67db54394b80b66ce79489868 schema:name readcube_id
57 schema:value 7c009595a4d8c990392cf4c1471cb1fef8536b6887eb04f3572a7d9ad3e9b8fc
58 rdf:type schema:PropertyValue
59 N52e1792b5b374eb0a00e5409aa92a6d2 schema:volumeNumber 2016
60 rdf:type schema:PublicationVolume
61 N581b6070967945519e3e3ce1e16bd0a9 schema:name doi
62 schema:value 10.1007/jhep03(2016)142
63 rdf:type schema:PropertyValue
64 N919f29f01f8747f8ab381bb4f9ddbf5c rdf:first sg:person.014202067175.05
65 rdf:rest Nb80c168da2cb439dbe6a21af1582df24
66 Na799b9e883d5419a903d5a34ce70f380 schema:name dimensions_id
67 schema:value pub.1026029510
68 rdf:type schema:PropertyValue
69 Nb80c168da2cb439dbe6a21af1582df24 rdf:first sg:person.015406775513.54
70 rdf:rest rdf:nil
71 Nba82feaa1ff54ce990350d481573d163 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nf307332dbfa544a9b66fa701c6475ee0 rdf:first sg:person.011055347723.72
74 rdf:rest N919f29f01f8747f8ab381bb4f9ddbf5c
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:journal.1052482 schema:issn 1029-8479
82 1126-6708
83 schema:name Journal of High Energy Physics
84 rdf:type schema:Periodical
85 sg:person.011055347723.72 schema:affiliation https://www.grid.ac/institutes/grid.7727.5
86 schema:familyName Manashov
87 schema:givenName A.N.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011055347723.72
89 rdf:type schema:Person
90 sg:person.01264313435.12 schema:affiliation https://www.grid.ac/institutes/grid.7727.5
91 schema:familyName Braun
92 schema:givenName V.M.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264313435.12
94 rdf:type schema:Person
95 sg:person.014202067175.05 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
96 schema:familyName Moch
97 schema:givenName S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014202067175.05
99 rdf:type schema:Person
100 sg:person.015406775513.54 schema:affiliation https://www.grid.ac/institutes/grid.7727.5
101 schema:familyName Strohmaier
102 schema:givenName M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406775513.54
104 rdf:type schema:Person
105 sg:pub.10.1007/bf01555504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015019737
106 https://doi.org/10.1007/bf01555504
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/jhep10(2014)076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029164291
109 https://doi.org/10.1007/jhep10(2014)076
110 rdf:type schema:CreativeWork
111 sg:pub.10.1088/1126-6708/2006/02/055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045850643
112 https://doi.org/10.1088/1126-6708/2006/02/055
113 rdf:type schema:CreativeWork
114 sg:pub.10.1140/epjc/s10052-013-2544-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039450862
115 https://doi.org/10.1140/epjc/s10052-013-2544-1
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0003-4916(76)90156-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031488824
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0370-2693(92)91086-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1023314670
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0550-3213(74)90076-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009595522
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0550-3213(82)90035-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051932762
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0550-3213(85)90628-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044683029
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0550-3213(89)90168-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049341437
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.nuclphysb.2004.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035862540
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.nuclphysb.2004.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003168830
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.physletb.2014.05.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047351996
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physrep.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042414606
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0146-6410(03)90004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031568114
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0370-2693(97)01390-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048378879
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0370-2693(99)00573-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524870
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0550-3213(00)00012-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004977263
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0550-3213(98)00310-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021210634
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0550-3213(98)00677-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002269597
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0550-3213(99)00265-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002940580
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1017/cbo9780511622656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098684190
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevd.49.2525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060701874
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevd.58.054005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006302900
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1201/9780203483565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036907866
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.7727.5 schema:alternateName University of Regensburg
160 schema:name Institut für Theoretische Physik, Universität Hamburg, D-22761, Hamburg, Germany
161 Institut für Theoretische Physik, Universität Regensburg, D-93040, Regensburg, Germany
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.9026.d schema:alternateName University of Hamburg
164 schema:name Institut für Theoretische Physik, Universität Hamburg, D-22761, Hamburg, Germany
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...