2d TQFT structure of the superconformal indices with outer-automorphism twists View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03-29

AUTHORS

Noppadol Mekareeya, Jaewon Song, Yuji Tachikawa

ABSTRACT

We study the superconformal indices of 4d theories coming from 6d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = (2, 0) theory of type Γ on a Riemann surface, with the action of the outer-automorphism σ in the trace. We find that the indices are given by the partition function of a deformed 2d Yang-Mills on the Riemann surface with gauge group G which is S-dual to the subgroup of Γ fixed by σ. In the 2-parameter deformed version, we find that it is governed not by Macdonald polynomials of type G, but by Macdonald polynomials associated to twisted affine root systems. More... »

PAGES

171

References to SciGraph publications

  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-24. The superconformal index of the E6 SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-07-20. Six-dimensional DN theory and four-dimensional SO-USp quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 1996-09. From Dynkin diagram symmetries to fixed point structures in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-09-02. Seiberg-Witten geometries revisited in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-08-06. N = 2 dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-08-27. N = 2 SU quiver with USP ends or SU ends with antisymmetric matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-24. Charging the superconformal index in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-03-08. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-07. Gauge Theories and Macdonald Polynomials in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-11-24. On S-duality of 5d super Yang-Mills on S1 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-03-15. The ABCDEFG of instantons and W-algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2013)171

    DOI

    http://dx.doi.org/10.1007/jhep03(2013)171

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033501882


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Physik (Werner-Heisenberg-Institut), F\u00f6hringer Ring 6, 80805, M\u00fcnchen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.435824.c", 
              "name": [
                "Max-Planck-Institut f\u00fcr Physik (Werner-Heisenberg-Institut), F\u00f6hringer Ring 6, 80805, M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mekareeya", 
            "givenName": "Noppadol", 
            "id": "sg:person.014662114762.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Jaewon", 
            "id": "sg:person.016403722241.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan", 
                "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tachikawa", 
            "givenName": "Yuji", 
            "id": "sg:person.010520672276.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2012)045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025450706", 
              "https://doi.org/10.1007/jhep03(2012)045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2012)034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000072911", 
              "https://doi.org/10.1007/jhep08(2012)034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1607-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049095812", 
              "https://doi.org/10.1007/s00220-012-1607-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037724474", 
              "https://doi.org/10.1007/jhep01(2012)116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051900430", 
              "https://doi.org/10.1007/jhep09(2011)010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/08/108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038528503", 
              "https://doi.org/10.1088/1126-6708/2009/08/108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033814222", 
              "https://doi.org/10.1007/jhep08(2010)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02101182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045911677", 
              "https://doi.org/10.1007/bf02101182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/07/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047269577", 
              "https://doi.org/10.1088/1126-6708/2009/07/067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2011)123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046523163", 
              "https://doi.org/10.1007/jhep11(2011)123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-03-29", 
        "datePublishedReg": "2013-03-29", 
        "description": "We study the superconformal indices of 4d theories coming from 6d \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$ \\mathcal{N} $\\end{document} = (2, 0) theory of type \u0393 on a Riemann surface, with the action of the outer-automorphism \u03c3 in the trace. We find that the indices are given by the partition function of a deformed 2d Yang-Mills on the Riemann surface with gauge group G which is S-dual to the subgroup of \u0393 fixed by \u03c3. In the 2-parameter deformed version, we find that it is governed not by Macdonald polynomials of type G, but by Macdonald polynomials associated to twisted affine root systems.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep03(2013)171", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2013"
          }
        ], 
        "keywords": [
          "superconformal index", 
          "Riemann surface", 
          "partition function", 
          "Yang-Mills", 
          "gauge group G", 
          "group G", 
          "deformed version", 
          "Macdonald polynomials", 
          "affine root systems", 
          "theory", 
          "type \u03b3", 
          "function", 
          "version", 
          "polynomials", 
          "type G", 
          "TQFT structure", 
          "outer-automorphism twists", 
          "twist", 
          "index", 
          "surface", 
          "action", 
          "traces", 
          "subgroups", 
          "root system", 
          "system", 
          "structure"
        ], 
        "name": "2d TQFT structure of the superconformal indices with outer-automorphism twists", 
        "pagination": "171", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033501882"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2013)171"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2013)171", 
          "https://app.dimensions.ai/details/publication/pub.1033501882"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_590.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep03(2013)171"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2013)171'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2013)171'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2013)171'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2013)171'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      21 PREDICATES      65 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2013)171 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N22dde13604ae42d08e31f43fb82503f5
    4 schema:citation sg:pub.10.1007/bf02101182
    5 sg:pub.10.1007/jhep01(2012)116
    6 sg:pub.10.1007/jhep03(2010)032
    7 sg:pub.10.1007/jhep03(2012)045
    8 sg:pub.10.1007/jhep08(2010)107
    9 sg:pub.10.1007/jhep08(2012)034
    10 sg:pub.10.1007/jhep09(2011)010
    11 sg:pub.10.1007/jhep11(2010)099
    12 sg:pub.10.1007/jhep11(2011)123
    13 sg:pub.10.1007/s00220-007-0258-7
    14 sg:pub.10.1007/s00220-012-1607-8
    15 sg:pub.10.1088/1126-6708/2007/03/090
    16 sg:pub.10.1088/1126-6708/2007/12/088
    17 sg:pub.10.1088/1126-6708/2009/07/067
    18 sg:pub.10.1088/1126-6708/2009/08/108
    19 schema:datePublished 2013-03-29
    20 schema:datePublishedReg 2013-03-29
    21 schema:description We study the superconformal indices of 4d theories coming from 6d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = (2, 0) theory of type Γ on a Riemann surface, with the action of the outer-automorphism σ in the trace. We find that the indices are given by the partition function of a deformed 2d Yang-Mills on the Riemann surface with gauge group G which is S-dual to the subgroup of Γ fixed by σ. In the 2-parameter deformed version, we find that it is governed not by Macdonald polynomials of type G, but by Macdonald polynomials associated to twisted affine root systems.
    22 schema:genre article
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N3e2fb4c274a0453aaa30f7e4316fc403
    25 Ne69b4cdac6c144a1a5124623ddd1ac62
    26 sg:journal.1052482
    27 schema:keywords Macdonald polynomials
    28 Riemann surface
    29 TQFT structure
    30 Yang-Mills
    31 action
    32 affine root systems
    33 deformed version
    34 function
    35 gauge group G
    36 group G
    37 index
    38 outer-automorphism twists
    39 partition function
    40 polynomials
    41 root system
    42 structure
    43 subgroups
    44 superconformal index
    45 surface
    46 system
    47 theory
    48 traces
    49 twist
    50 type G
    51 type γ
    52 version
    53 schema:name 2d TQFT structure of the superconformal indices with outer-automorphism twists
    54 schema:pagination 171
    55 schema:productId N2e0fc402af1e42f0b97ab40b354c734f
    56 N41160847e09044fbafc818b77f5224e6
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033501882
    58 https://doi.org/10.1007/jhep03(2013)171
    59 schema:sdDatePublished 2022-10-01T06:38
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N1f3e8adef9924b21906a20bf61afbf64
    62 schema:url https://doi.org/10.1007/jhep03(2013)171
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N1f3e8adef9924b21906a20bf61afbf64 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N22dde13604ae42d08e31f43fb82503f5 rdf:first sg:person.014662114762.32
    69 rdf:rest Nb1bcf728deb84974890c8ff4f7bbb055
    70 N2e0fc402af1e42f0b97ab40b354c734f schema:name dimensions_id
    71 schema:value pub.1033501882
    72 rdf:type schema:PropertyValue
    73 N3e2fb4c274a0453aaa30f7e4316fc403 schema:volumeNumber 2013
    74 rdf:type schema:PublicationVolume
    75 N41160847e09044fbafc818b77f5224e6 schema:name doi
    76 schema:value 10.1007/jhep03(2013)171
    77 rdf:type schema:PropertyValue
    78 Nb1bcf728deb84974890c8ff4f7bbb055 rdf:first sg:person.016403722241.33
    79 rdf:rest Nca50a52def0646f3b4c845a71422d7b1
    80 Nca50a52def0646f3b4c845a71422d7b1 rdf:first sg:person.010520672276.19
    81 rdf:rest rdf:nil
    82 Ne69b4cdac6c144a1a5124623ddd1ac62 schema:issueNumber 3
    83 rdf:type schema:PublicationIssue
    84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Mathematical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Pure Mathematics
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1052482 schema:issn 1029-8479
    91 1126-6708
    92 schema:name Journal of High Energy Physics
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.010520672276.19 schema:affiliation grid-institutes:grid.440880.0
    96 schema:familyName Tachikawa
    97 schema:givenName Yuji
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
    99 rdf:type schema:Person
    100 sg:person.014662114762.32 schema:affiliation grid-institutes:grid.435824.c
    101 schema:familyName Mekareeya
    102 schema:givenName Noppadol
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014662114762.32
    104 rdf:type schema:Person
    105 sg:person.016403722241.33 schema:affiliation grid-institutes:grid.266100.3
    106 schema:familyName Song
    107 schema:givenName Jaewon
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016403722241.33
    109 rdf:type schema:Person
    110 sg:pub.10.1007/bf02101182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045911677
    111 https://doi.org/10.1007/bf02101182
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/jhep01(2012)116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037724474
    114 https://doi.org/10.1007/jhep01(2012)116
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    117 https://doi.org/10.1007/jhep03(2010)032
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/jhep03(2012)045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450706
    120 https://doi.org/10.1007/jhep03(2012)045
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/jhep08(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814222
    123 https://doi.org/10.1007/jhep08(2010)107
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
    126 https://doi.org/10.1007/jhep08(2012)034
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/jhep09(2011)010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051900430
    129 https://doi.org/10.1007/jhep09(2011)010
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    132 https://doi.org/10.1007/jhep11(2010)099
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep11(2011)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046523163
    135 https://doi.org/10.1007/jhep11(2011)123
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    138 https://doi.org/10.1007/s00220-007-0258-7
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00220-012-1607-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    141 https://doi.org/10.1007/s00220-012-1607-8
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    144 https://doi.org/10.1088/1126-6708/2007/03/090
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    147 https://doi.org/10.1088/1126-6708/2007/12/088
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1088/1126-6708/2009/07/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269577
    150 https://doi.org/10.1088/1126-6708/2009/07/067
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1088/1126-6708/2009/08/108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038528503
    153 https://doi.org/10.1088/1126-6708/2009/08/108
    154 rdf:type schema:CreativeWork
    155 grid-institutes:grid.266100.3 schema:alternateName Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.
    156 schema:name Department of Physics, University of California, San Diego, 92093, La Jolla, CA, U.S.A.
    157 rdf:type schema:Organization
    158 grid-institutes:grid.435824.c schema:alternateName Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805, München, Germany
    159 schema:name Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805, München, Germany
    160 rdf:type schema:Organization
    161 grid-institutes:grid.440880.0 schema:alternateName Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    162 schema:name Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan
    163 Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...