F-theory fluxes, chirality and Chern-Simons theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03-09

AUTHORS

Thomas W. Grimm, Hirotaka Hayashi

ABSTRACT

We study the charged chiral matter spectrum of four-dimensional F-theory compactifications on elliptically fibered Calabi-Yau fourfolds by using the dual M-theory description. A chiral spectrum can be induced by M-theory four-form flux on the fully resolved Calabi-Yau fourfold. In M-theory this flux yields three-dimensional Chern-Simons couplings in the Coulomb branch of the gauge theory. In the F-theory compactification on an additional circle these couplings are only generated by one-loop corrections with charged fermions running in the loop. This identification allows us to infer the net number of chiral matter fields of the four-dimensional effective theory. The chirality formulas can be evaluated by using the intersection numbers and the cones of effective curves of the resolved fourfolds. We argue that a study of the effective curves also allows to follow the resolution process at each co-dimension. To write simple chirality formulas we suggest to use the effective curves involved in the resolution process to determine the matter surfaces and to connect with the group theory at co-dimension two in the base. We exemplify our methods on examples with SU(5) and SU(5) × U(1) gauge group. More... »

PAGES

27

References to SciGraph publications

  • 2009-01-23. GUTs and exceptional branes in F-theory — I in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-08-27. M-theory, orientifolds and G-flux in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-12-01. Massive Abelian gauge symmetries and fluxes in F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-04-07. Computing brane and flux superpotentials in F-theory compactifications in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-24. Global aspects of the space of 6D supergravities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-05. Matter and singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-08-12. Monodromies, fluxes, and compact three-generation F-theory GUTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-10-15. Global SO(10) F-theory GUTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-02-07. On flux quantization in F-theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-26. Constraints on 6D supergravity theories with abelian gauge symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-01-18. Global F-theory models: instantons and gauge dynamics in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-12-01. Spectral covers, charged matter and bundle cohomology in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-07-12. F-theory GUT vacua on compact Calabi-Yau fourfolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-19. A note on G-fluxes for F-theory model building in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-28. Toric construction of global F-theory GUTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 1997-08. Vector Bundles and F Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-11-21. Yukawas, G-flux, and spectral covers from resolved Calabi-Yau’s in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2012)027

    DOI

    http://dx.doi.org/10.1007/jhep03(2012)027

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003639562


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Physics, F\u00f6hringer Ring 6, 80805, Munich, Germany", 
              "id": "http://www.grid.ac/institutes/grid.435824.c", 
              "name": [
                "Max Planck Institute for Physics, F\u00f6hringer Ring 6, 80805, Munich, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grimm", 
            "givenName": "Thomas W.", 
            "id": "sg:person.012302420204.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302420204.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, 130-722, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.249961.1", 
              "name": [
                "School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, 130-722, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayashi", 
            "givenName": "Hirotaka", 
            "id": "sg:person.012413203443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep12(2011)004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051758666", 
              "https://doi.org/10.1007/jhep12(2011)004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2010)057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018072460", 
              "https://doi.org/10.1007/jhep10(2010)057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2010)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042037362", 
              "https://doi.org/10.1007/jhep04(2010)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2012)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038850811", 
              "https://doi.org/10.1007/jhep02(2012)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021570125", 
              "https://doi.org/10.1007/jhep11(2010)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045044378", 
              "https://doi.org/10.1007/jhep01(2012)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2011)073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028642578", 
              "https://doi.org/10.1007/jhep01(2011)073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018223641", 
              "https://doi.org/10.1007/s002200050154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044756038", 
              "https://doi.org/10.1007/jhep11(2010)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/08/046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043993189", 
              "https://doi.org/10.1088/1126-6708/2009/08/046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2010)037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030229004", 
              "https://doi.org/10.1007/jhep07(2010)037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039375961", 
              "https://doi.org/10.1007/jhep01(2012)141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2011)138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032439530", 
              "https://doi.org/10.1007/jhep03(2011)138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/08/023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050674685", 
              "https://doi.org/10.1088/1126-6708/1999/08/023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/12/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002629514", 
              "https://doi.org/10.1088/1126-6708/1998/12/001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/01/058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041338859", 
              "https://doi.org/10.1088/1126-6708/2009/01/058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2011)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039895775", 
              "https://doi.org/10.1007/jhep11(2011)098"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-03-09", 
        "datePublishedReg": "2012-03-09", 
        "description": "We study the charged chiral matter spectrum of four-dimensional F-theory compactifications on elliptically fibered Calabi-Yau fourfolds by using the dual M-theory description. A chiral spectrum can be induced by M-theory four-form flux on the fully resolved Calabi-Yau fourfold. In M-theory this flux yields three-dimensional Chern-Simons couplings in the Coulomb branch of the gauge theory. In the F-theory compactification on an additional circle these couplings are only generated by one-loop corrections with charged fermions running in the loop. This identification allows us to infer the net number of chiral matter fields of the four-dimensional effective theory. The chirality formulas can be evaluated by using the intersection numbers and the cones of effective curves of the resolved fourfolds. We argue that a study of the effective curves also allows to follow the resolution process at each co-dimension. To write simple chirality formulas we suggest to use the effective curves involved in the resolution process to determine the matter surfaces and to connect with the group theory at co-dimension two in the base. We exemplify our methods on examples with SU(5) and SU(5) \u00d7 U(1) gauge group.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep03(2012)027", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2012"
          }
        ], 
        "keywords": [
          "Calabi-Yau fourfolds", 
          "theory compactifications", 
          "four-form flux", 
          "three-dimensional Chern", 
          "effective curves", 
          "Chern-Simons theory", 
          "chiral matter spectrum", 
          "four-dimensional effective theory", 
          "Coulomb branch", 
          "one-loop corrections", 
          "group theory", 
          "theory description", 
          "chiral spectrum", 
          "gauge theory", 
          "intersection numbers", 
          "gauge group", 
          "chiral matter fields", 
          "matter fields", 
          "theory fluxes", 
          "matter spectrum", 
          "compactification", 
          "effective theory", 
          "theory", 
          "Chern", 
          "formula", 
          "net number", 
          "fermions", 
          "description", 
          "coupling", 
          "loop", 
          "number", 
          "curves", 
          "fourfold", 
          "circle", 
          "cone", 
          "resolution process", 
          "branches", 
          "field", 
          "flux", 
          "process", 
          "correction", 
          "matter surface", 
          "identification", 
          "spectra", 
          "base", 
          "surface", 
          "study", 
          "group", 
          "chirality", 
          "method", 
          "example", 
          "Simons couplings", 
          "additional circles", 
          "chirality formulas", 
          "simple chirality formulas"
        ], 
        "name": "F-theory fluxes, chirality and Chern-Simons theories", 
        "pagination": "27", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003639562"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2012)027"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2012)027", 
          "https://app.dimensions.ai/details/publication/pub.1003639562"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_584.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep03(2012)027"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2012)027'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2012)027'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2012)027'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2012)027'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      22 PREDICATES      97 URIs      72 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2012)027 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nde1514d56b6c4000aca4e12bca717bff
    4 schema:citation sg:pub.10.1007/jhep01(2011)073
    5 sg:pub.10.1007/jhep01(2012)022
    6 sg:pub.10.1007/jhep01(2012)141
    7 sg:pub.10.1007/jhep02(2012)015
    8 sg:pub.10.1007/jhep03(2011)138
    9 sg:pub.10.1007/jhep04(2010)015
    10 sg:pub.10.1007/jhep07(2010)037
    11 sg:pub.10.1007/jhep10(2010)057
    12 sg:pub.10.1007/jhep11(2010)088
    13 sg:pub.10.1007/jhep11(2010)118
    14 sg:pub.10.1007/jhep11(2011)098
    15 sg:pub.10.1007/jhep12(2011)004
    16 sg:pub.10.1007/s002200050154
    17 sg:pub.10.1088/1126-6708/1998/12/001
    18 sg:pub.10.1088/1126-6708/1999/08/023
    19 sg:pub.10.1088/1126-6708/2009/01/058
    20 sg:pub.10.1088/1126-6708/2009/08/046
    21 schema:datePublished 2012-03-09
    22 schema:datePublishedReg 2012-03-09
    23 schema:description We study the charged chiral matter spectrum of four-dimensional F-theory compactifications on elliptically fibered Calabi-Yau fourfolds by using the dual M-theory description. A chiral spectrum can be induced by M-theory four-form flux on the fully resolved Calabi-Yau fourfold. In M-theory this flux yields three-dimensional Chern-Simons couplings in the Coulomb branch of the gauge theory. In the F-theory compactification on an additional circle these couplings are only generated by one-loop corrections with charged fermions running in the loop. This identification allows us to infer the net number of chiral matter fields of the four-dimensional effective theory. The chirality formulas can be evaluated by using the intersection numbers and the cones of effective curves of the resolved fourfolds. We argue that a study of the effective curves also allows to follow the resolution process at each co-dimension. To write simple chirality formulas we suggest to use the effective curves involved in the resolution process to determine the matter surfaces and to connect with the group theory at co-dimension two in the base. We exemplify our methods on examples with SU(5) and SU(5) × U(1) gauge group.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree true
    27 schema:isPartOf N72b83039464646e3a57a957672ddaedf
    28 N93b3dc66a9dd4cd387568d46c2c022d5
    29 sg:journal.1052482
    30 schema:keywords Calabi-Yau fourfolds
    31 Chern
    32 Chern-Simons theory
    33 Coulomb branch
    34 Simons couplings
    35 additional circles
    36 base
    37 branches
    38 chiral matter fields
    39 chiral matter spectrum
    40 chiral spectrum
    41 chirality
    42 chirality formulas
    43 circle
    44 compactification
    45 cone
    46 correction
    47 coupling
    48 curves
    49 description
    50 effective curves
    51 effective theory
    52 example
    53 fermions
    54 field
    55 flux
    56 formula
    57 four-dimensional effective theory
    58 four-form flux
    59 fourfold
    60 gauge group
    61 gauge theory
    62 group
    63 group theory
    64 identification
    65 intersection numbers
    66 loop
    67 matter fields
    68 matter spectrum
    69 matter surface
    70 method
    71 net number
    72 number
    73 one-loop corrections
    74 process
    75 resolution process
    76 simple chirality formulas
    77 spectra
    78 study
    79 surface
    80 theory
    81 theory compactifications
    82 theory description
    83 theory fluxes
    84 three-dimensional Chern
    85 schema:name F-theory fluxes, chirality and Chern-Simons theories
    86 schema:pagination 27
    87 schema:productId N0274b7c2cef443978abba1de8288bb04
    88 N7c84d880c165401a93256eeca5dbe97c
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003639562
    90 https://doi.org/10.1007/jhep03(2012)027
    91 schema:sdDatePublished 2022-01-01T18:28
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher Nae636ba7f5c34d09bb1da039bd23033e
    94 schema:url https://doi.org/10.1007/jhep03(2012)027
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N0274b7c2cef443978abba1de8288bb04 schema:name dimensions_id
    99 schema:value pub.1003639562
    100 rdf:type schema:PropertyValue
    101 N72b83039464646e3a57a957672ddaedf schema:issueNumber 3
    102 rdf:type schema:PublicationIssue
    103 N7c84d880c165401a93256eeca5dbe97c schema:name doi
    104 schema:value 10.1007/jhep03(2012)027
    105 rdf:type schema:PropertyValue
    106 N93b3dc66a9dd4cd387568d46c2c022d5 schema:volumeNumber 2012
    107 rdf:type schema:PublicationVolume
    108 Nabdd407dbcea45458dc0612ce5aaf274 rdf:first sg:person.012413203443.40
    109 rdf:rest rdf:nil
    110 Nae636ba7f5c34d09bb1da039bd23033e schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 Nde1514d56b6c4000aca4e12bca717bff rdf:first sg:person.012302420204.29
    113 rdf:rest Nabdd407dbcea45458dc0612ce5aaf274
    114 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Mathematical Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Pure Mathematics
    119 rdf:type schema:DefinedTerm
    120 sg:journal.1052482 schema:issn 1029-8479
    121 1126-6708
    122 schema:name Journal of High Energy Physics
    123 schema:publisher Springer Nature
    124 rdf:type schema:Periodical
    125 sg:person.012302420204.29 schema:affiliation grid-institutes:grid.435824.c
    126 schema:familyName Grimm
    127 schema:givenName Thomas W.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302420204.29
    129 rdf:type schema:Person
    130 sg:person.012413203443.40 schema:affiliation grid-institutes:grid.249961.1
    131 schema:familyName Hayashi
    132 schema:givenName Hirotaka
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40
    134 rdf:type schema:Person
    135 sg:pub.10.1007/jhep01(2011)073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028642578
    136 https://doi.org/10.1007/jhep01(2011)073
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep01(2012)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045044378
    139 https://doi.org/10.1007/jhep01(2012)022
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep01(2012)141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039375961
    142 https://doi.org/10.1007/jhep01(2012)141
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep02(2012)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038850811
    145 https://doi.org/10.1007/jhep02(2012)015
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep03(2011)138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032439530
    148 https://doi.org/10.1007/jhep03(2011)138
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep04(2010)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042037362
    151 https://doi.org/10.1007/jhep04(2010)015
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep07(2010)037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030229004
    154 https://doi.org/10.1007/jhep07(2010)037
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep10(2010)057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018072460
    157 https://doi.org/10.1007/jhep10(2010)057
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep11(2010)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044756038
    160 https://doi.org/10.1007/jhep11(2010)088
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep11(2010)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021570125
    163 https://doi.org/10.1007/jhep11(2010)118
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/jhep11(2011)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039895775
    166 https://doi.org/10.1007/jhep11(2011)098
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/jhep12(2011)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051758666
    169 https://doi.org/10.1007/jhep12(2011)004
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s002200050154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018223641
    172 https://doi.org/10.1007/s002200050154
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1088/1126-6708/1998/12/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002629514
    175 https://doi.org/10.1088/1126-6708/1998/12/001
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1088/1126-6708/1999/08/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050674685
    178 https://doi.org/10.1088/1126-6708/1999/08/023
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1088/1126-6708/2009/01/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041338859
    181 https://doi.org/10.1088/1126-6708/2009/01/058
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1088/1126-6708/2009/08/046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043993189
    184 https://doi.org/10.1088/1126-6708/2009/08/046
    185 rdf:type schema:CreativeWork
    186 grid-institutes:grid.249961.1 schema:alternateName School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, 130-722, Seoul, Republic of Korea
    187 schema:name School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, 130-722, Seoul, Republic of Korea
    188 rdf:type schema:Organization
    189 grid-institutes:grid.435824.c schema:alternateName Max Planck Institute for Physics, Föhringer Ring 6, 80805, Munich, Germany
    190 schema:name Max Planck Institute for Physics, Föhringer Ring 6, 80805, Munich, Germany
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...