Ontology type: schema:ScholarlyArticle Open Access: True
2010-03
AUTHORSLawrence J. Hall, Karsten Jedamzik, John March-Russell, Stephen M. West
ABSTRACTWe propose an alternate, calculable mechanism of dark matter genesis, “thermal freeze-in”, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional “thermal freeze-out” production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis. More... »
PAGES80
http://scigraph.springernature.com/pub.10.1007/jhep03(2010)080
DOIhttp://dx.doi.org/10.1007/jhep03(2010)080
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014984013
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Kavli Institute for the Physics and Mathematics of the Universe",
"id": "https://www.grid.ac/institutes/grid.440880.0",
"name": [
"Department of Physics, University of California, 94720, Berkeley, CA, U.S.A.",
"Theoretical Physics Group, LBNL, 94720, Berkeley, CA, U.S.A.",
"Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8568, Kashiwa, Japan"
],
"type": "Organization"
},
"familyName": "Hall",
"givenName": "Lawrence J.",
"id": "sg:person.011274767253.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274767253.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Montpellier",
"id": "https://www.grid.ac/institutes/grid.121334.6",
"name": [
"Laboratoire de Physique Theorique et Astroparticules, UMR5207-CNRS, Universite Montpellier II, F-34095, Montpellier, France"
],
"type": "Organization"
},
"familyName": "Jedamzik",
"givenName": "Karsten",
"id": "sg:person.012566542571.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566542571.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oxford",
"id": "https://www.grid.ac/institutes/grid.4991.5",
"name": [
"Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., OX1 3NP, Oxford, U.K."
],
"type": "Organization"
},
"familyName": "March-Russell",
"givenName": "John",
"id": "sg:person.015004773115.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004773115.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Royal Holloway University of London",
"id": "https://www.grid.ac/institutes/grid.4970.a",
"name": [
"Royal Holloway, University of London, TW20 0EX, Egham, U.K.",
"Rutherford Appleton Laboratory, OX11 0QX, Chilton, Didcot, U.K."
],
"type": "Organization"
},
"familyName": "West",
"givenName": "Stephen M.",
"id": "sg:person.0672560600.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672560600.35"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1088/1475-7516/2009/08/017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004647058"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1475-7516/2009/08/017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004647058"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.79.103523",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005921440"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.79.103523",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005921440"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(88)90597-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007311141"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(88)90597-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007311141"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1475-7516/2006/05/005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009389505"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.73.023505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010277056"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.73.023505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010277056"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.64.055003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010507428"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.64.055003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010507428"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2008/07/124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021419228",
"https://doi.org/10.1088/1126-6708/2008/07/124"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1475-7516/2009/01/003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022698921"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.73.051301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023876575"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.73.051301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023876575"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/11/050",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027016454",
"https://doi.org/10.1088/1126-6708/2006/11/050"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.80.055011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028418994"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.80.055011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028418994"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.79.105022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028558452"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.79.105022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028558452"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2006/06/051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030294547",
"https://doi.org/10.1088/1126-6708/2006/06/051"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.75.065001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033088002"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.75.065001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033088002"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physrep.2009.07.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036612680"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature07942",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036986807",
"https://doi.org/10.1038/nature07942"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature07942",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036986807",
"https://doi.org/10.1038/nature07942"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0550-3213(96)00190-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038974398"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0550-3213(01)00374-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040550549"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.74.103509",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040858522"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.74.103509",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040858522"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/04/021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042721886",
"https://doi.org/10.1088/1126-6708/2007/04/021"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/04/021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042721886",
"https://doi.org/10.1088/1126-6708/2007/04/021"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.102.181101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042925666"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.102.181101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042925666"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.97.241301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043627996"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.97.241301",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043627996"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.77.065014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044173239"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.77.065014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044173239"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.88.091304",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044241656"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.88.091304",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044241656"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0550-3213(97)80028-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045775624"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.2149672",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046456351"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/498013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049459249"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/498013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049459249"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(86)91377-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051047074"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0370-2693(86)91377-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051047074"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0370-2693(01)00650-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051290148"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.56.1879",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052380546"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.56.1879",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052380546"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/0004-6361/200913323",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056913809"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.102.051101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060754750"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.102.051101",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060754750"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.17.712",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060769427"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.17.712",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060769427"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.64.615",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060800913"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.64.615",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060800913"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1143/ptp.105.999",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063128032"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3367/ufnr.0087.196509g.0113",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071214462"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/atmp.2003.v7.n4.a1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072457093"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-03",
"datePublishedReg": "2010-03-01",
"description": "We propose an alternate, calculable mechanism of dark matter genesis, \u201cthermal freeze-in\u201d, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional \u201cthermal freeze-out\u201d production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.",
"genre": "research_article",
"id": "sg:pub.10.1007/jhep03(2010)080",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2762859",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2010"
}
],
"name": "Freeze-in production of FIMP dark matter",
"pagination": "80",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"4763844be025f9c79ed914e5d6cc1b0335c2c9d4f3eb4f965d661cf201d624e8"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep03(2010)080"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014984013"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep03(2010)080",
"https://app.dimensions.ai/details/publication/pub.1014984013"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T14:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13078_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2FJHEP03%282010%29080"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'
This table displays all metadata directly associated to this object as RDF triples.
212 TRIPLES
21 PREDICATES
64 URIs
19 LITERALS
7 BLANK NODES