Freeze-in production of FIMP dark matter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03

AUTHORS

Lawrence J. Hall, Karsten Jedamzik, John March-Russell, Stephen M. West

ABSTRACT

We propose an alternate, calculable mechanism of dark matter genesis, “thermal freeze-in”, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional “thermal freeze-out” production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis. More... »

PAGES

80

References to SciGraph publications

  • 2006-06-26. Axions in string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-07-29. Kinetic mixing of the photon with hidden U(1)s in string phenomenology in JOURNAL OF HIGH ENERGY PHYSICS
  • 2006-11-20. Stop decay into right-handed sneutrino LSP at hadron colliders in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-04. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV in NATURE
  • 2007-04-03. Non-thermal right-handed sneutrino dark matter and the ΩDM/Ωb problem in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep03(2010)080

    DOI

    http://dx.doi.org/10.1007/jhep03(2010)080

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014984013


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kavli Institute for the Physics and Mathematics of the Universe", 
              "id": "https://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Department of Physics, University of California, 94720, Berkeley, CA, U.S.A.", 
                "Theoretical Physics Group, LBNL, 94720, Berkeley, CA, U.S.A.", 
                "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8568, Kashiwa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hall", 
            "givenName": "Lawrence J.", 
            "id": "sg:person.011274767253.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274767253.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Montpellier", 
              "id": "https://www.grid.ac/institutes/grid.121334.6", 
              "name": [
                "Laboratoire de Physique Theorique et Astroparticules, UMR5207-CNRS, Universite Montpellier II, F-34095, Montpellier, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jedamzik", 
            "givenName": "Karsten", 
            "id": "sg:person.012566542571.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566542571.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., OX1 3NP, Oxford, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "March-Russell", 
            "givenName": "John", 
            "id": "sg:person.015004773115.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004773115.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Holloway University of London", 
              "id": "https://www.grid.ac/institutes/grid.4970.a", 
              "name": [
                "Royal Holloway, University of London, TW20 0EX, Egham, U.K.", 
                "Rutherford Appleton Laboratory, OX11 0QX, Chilton, Didcot, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "West", 
            "givenName": "Stephen M.", 
            "id": "sg:person.0672560600.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672560600.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/1475-7516/2009/08/017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004647058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2009/08/017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004647058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.103523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005921440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.103523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005921440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)90597-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007311141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(88)90597-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007311141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2006/05/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009389505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.023505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010277056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.023505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010277056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.64.055003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010507428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.64.055003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010507428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/07/124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021419228", 
              "https://doi.org/10.1088/1126-6708/2008/07/124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1475-7516/2009/01/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022698921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.051301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023876575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.051301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023876575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027016454", 
              "https://doi.org/10.1088/1126-6708/2006/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.80.055011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028418994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.80.055011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028418994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.105022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028558452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.105022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028558452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/06/051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030294547", 
              "https://doi.org/10.1088/1126-6708/2006/06/051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.75.065001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033088002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.75.065001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033088002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physrep.2009.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036612680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036986807", 
              "https://doi.org/10.1038/nature07942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07942", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036986807", 
              "https://doi.org/10.1038/nature07942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(96)00190-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038974398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(01)00374-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040550549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.74.103509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040858522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.74.103509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040858522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/04/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042721886", 
              "https://doi.org/10.1088/1126-6708/2007/04/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/04/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042721886", 
              "https://doi.org/10.1088/1126-6708/2007/04/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.181101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042925666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.181101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042925666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.241301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043627996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.241301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043627996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.065014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044173239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.065014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044173239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.091304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044241656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.88.091304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044241656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)80028-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045775624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2149672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046456351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/498013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049459249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/498013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049459249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91377-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051047074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91377-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051047074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(01)00650-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051290148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.56.1879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052380546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.56.1879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052380546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/0004-6361/200913323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056913809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.051101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060754750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.051101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060754750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.17.712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060769427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.17.712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060769427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptp.105.999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063128032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3367/ufnr.0087.196509g.0113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071214462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2003.v7.n4.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457093"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-03", 
        "datePublishedReg": "2010-03-01", 
        "description": "We propose an alternate, calculable mechanism of dark matter genesis, \u201cthermal freeze-in\u201d, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional \u201cthermal freeze-out\u201d production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep03(2010)080", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2762859", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2010"
          }
        ], 
        "name": "Freeze-in production of FIMP dark matter", 
        "pagination": "80", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4763844be025f9c79ed914e5d6cc1b0335c2c9d4f3eb4f965d661cf201d624e8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep03(2010)080"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014984013"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep03(2010)080", 
          "https://app.dimensions.ai/details/publication/pub.1014984013"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13078_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP03%282010%29080"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep03(2010)080'


     

    This table displays all metadata directly associated to this object as RDF triples.

    212 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep03(2010)080 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N234bdce3dc274e9f99232bc8f7fdeb10
    4 schema:citation sg:pub.10.1038/nature07942
    5 sg:pub.10.1088/1126-6708/2006/06/051
    6 sg:pub.10.1088/1126-6708/2006/11/050
    7 sg:pub.10.1088/1126-6708/2007/04/021
    8 sg:pub.10.1088/1126-6708/2008/07/124
    9 https://doi.org/10.1016/0370-2693(86)91377-8
    10 https://doi.org/10.1016/0370-2693(88)90597-7
    11 https://doi.org/10.1016/0550-3213(96)00190-3
    12 https://doi.org/10.1016/j.physrep.2009.07.004
    13 https://doi.org/10.1016/s0370-2693(01)00650-5
    14 https://doi.org/10.1016/s0550-3213(01)00374-1
    15 https://doi.org/10.1016/s0550-3213(97)80028-4
    16 https://doi.org/10.1051/0004-6361/200913323
    17 https://doi.org/10.1063/1.2149672
    18 https://doi.org/10.1086/498013
    19 https://doi.org/10.1088/1475-7516/2006/05/005
    20 https://doi.org/10.1088/1475-7516/2009/01/003
    21 https://doi.org/10.1088/1475-7516/2009/08/017
    22 https://doi.org/10.1103/physrevd.56.1879
    23 https://doi.org/10.1103/physrevd.64.055003
    24 https://doi.org/10.1103/physrevd.73.023505
    25 https://doi.org/10.1103/physrevd.73.051301
    26 https://doi.org/10.1103/physrevd.74.103509
    27 https://doi.org/10.1103/physrevd.75.065001
    28 https://doi.org/10.1103/physrevd.77.065014
    29 https://doi.org/10.1103/physrevd.79.103523
    30 https://doi.org/10.1103/physrevd.79.105022
    31 https://doi.org/10.1103/physrevd.80.055011
    32 https://doi.org/10.1103/physrevlett.102.051101
    33 https://doi.org/10.1103/physrevlett.102.181101
    34 https://doi.org/10.1103/physrevlett.17.712
    35 https://doi.org/10.1103/physrevlett.64.615
    36 https://doi.org/10.1103/physrevlett.88.091304
    37 https://doi.org/10.1103/physrevlett.97.241301
    38 https://doi.org/10.1143/ptp.105.999
    39 https://doi.org/10.3367/ufnr.0087.196509g.0113
    40 https://doi.org/10.4310/atmp.2003.v7.n4.a1
    41 schema:datePublished 2010-03
    42 schema:datePublishedReg 2010-03-01
    43 schema:description We propose an alternate, calculable mechanism of dark matter genesis, “thermal freeze-in”, involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional “thermal freeze-out” production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N98b2e408e0134d6d801e6ed90284cbda
    48 Nb118996b380648a9ac1ad764ce5cff39
    49 sg:journal.1052482
    50 schema:name Freeze-in production of FIMP dark matter
    51 schema:pagination 80
    52 schema:productId N260fd187d6d345ce8ffaa412af1ec6c7
    53 N7557a13b8b2b4b92a5b4a145c1d2f91c
    54 Nfba96657a46d4a01a51bd3b0460409ef
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014984013
    56 https://doi.org/10.1007/jhep03(2010)080
    57 schema:sdDatePublished 2019-04-11T14:27
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N910f7838b4f34e729253b0707487c108
    60 schema:url https://link.springer.com/10.1007%2FJHEP03%282010%29080
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N1c638c3e33b246f491b8cf81fd58b85f rdf:first sg:person.012566542571.34
    65 rdf:rest N7800ff3890fe47fba5fb1c8365a21caf
    66 N234bdce3dc274e9f99232bc8f7fdeb10 rdf:first sg:person.011274767253.09
    67 rdf:rest N1c638c3e33b246f491b8cf81fd58b85f
    68 N260fd187d6d345ce8ffaa412af1ec6c7 schema:name readcube_id
    69 schema:value 4763844be025f9c79ed914e5d6cc1b0335c2c9d4f3eb4f965d661cf201d624e8
    70 rdf:type schema:PropertyValue
    71 N7557a13b8b2b4b92a5b4a145c1d2f91c schema:name dimensions_id
    72 schema:value pub.1014984013
    73 rdf:type schema:PropertyValue
    74 N7800ff3890fe47fba5fb1c8365a21caf rdf:first sg:person.015004773115.17
    75 rdf:rest N7918d8860c444c6d882f46ab4f768c9a
    76 N7918d8860c444c6d882f46ab4f768c9a rdf:first sg:person.0672560600.35
    77 rdf:rest rdf:nil
    78 N910f7838b4f34e729253b0707487c108 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N98b2e408e0134d6d801e6ed90284cbda schema:volumeNumber 2010
    81 rdf:type schema:PublicationVolume
    82 Nb118996b380648a9ac1ad764ce5cff39 schema:issueNumber 3
    83 rdf:type schema:PublicationIssue
    84 Nfba96657a46d4a01a51bd3b0460409ef schema:name doi
    85 schema:value 10.1007/jhep03(2010)080
    86 rdf:type schema:PropertyValue
    87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Engineering
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Interdisciplinary Engineering
    92 rdf:type schema:DefinedTerm
    93 sg:grant.2762859 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep03(2010)080
    94 rdf:type schema:MonetaryGrant
    95 sg:journal.1052482 schema:issn 1029-8479
    96 1126-6708
    97 schema:name Journal of High Energy Physics
    98 rdf:type schema:Periodical
    99 sg:person.011274767253.09 schema:affiliation https://www.grid.ac/institutes/grid.440880.0
    100 schema:familyName Hall
    101 schema:givenName Lawrence J.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011274767253.09
    103 rdf:type schema:Person
    104 sg:person.012566542571.34 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
    105 schema:familyName Jedamzik
    106 schema:givenName Karsten
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012566542571.34
    108 rdf:type schema:Person
    109 sg:person.015004773115.17 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    110 schema:familyName March-Russell
    111 schema:givenName John
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004773115.17
    113 rdf:type schema:Person
    114 sg:person.0672560600.35 schema:affiliation https://www.grid.ac/institutes/grid.4970.a
    115 schema:familyName West
    116 schema:givenName Stephen M.
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672560600.35
    118 rdf:type schema:Person
    119 sg:pub.10.1038/nature07942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036986807
    120 https://doi.org/10.1038/nature07942
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1088/1126-6708/2006/06/051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030294547
    123 https://doi.org/10.1088/1126-6708/2006/06/051
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1088/1126-6708/2006/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027016454
    126 https://doi.org/10.1088/1126-6708/2006/11/050
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1088/1126-6708/2007/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042721886
    129 https://doi.org/10.1088/1126-6708/2007/04/021
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1088/1126-6708/2008/07/124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021419228
    132 https://doi.org/10.1088/1126-6708/2008/07/124
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/0370-2693(86)91377-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051047074
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/0370-2693(88)90597-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007311141
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/0550-3213(96)00190-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038974398
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.physrep.2009.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036612680
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/s0370-2693(01)00650-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051290148
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/s0550-3213(01)00374-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040550549
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/s0550-3213(97)80028-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045775624
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1051/0004-6361/200913323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056913809
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1063/1.2149672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046456351
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1086/498013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049459249
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1088/1475-7516/2006/05/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009389505
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1088/1475-7516/2009/01/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022698921
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1088/1475-7516/2009/08/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004647058
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1103/physrevd.56.1879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052380546
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1103/physrevd.64.055003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010507428
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1103/physrevd.73.023505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010277056
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1103/physrevd.73.051301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023876575
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1103/physrevd.74.103509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040858522
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1103/physrevd.75.065001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033088002
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1103/physrevd.77.065014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044173239
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1103/physrevd.79.103523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005921440
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1103/physrevd.79.105022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028558452
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physrevd.80.055011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028418994
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/physrevlett.102.051101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754750
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1103/physrevlett.102.181101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042925666
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1103/physrevlett.17.712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769427
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/physrevlett.64.615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800913
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physrevlett.88.091304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044241656
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physrevlett.97.241301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043627996
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1143/ptp.105.999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063128032
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.3367/ufnr.0087.196509g.0113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071214462
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.4310/atmp.2003.v7.n4.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457093
    197 rdf:type schema:CreativeWork
    198 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
    199 schema:name Laboratoire de Physique Theorique et Astroparticules, UMR5207-CNRS, Universite Montpellier II, F-34095, Montpellier, France
    200 rdf:type schema:Organization
    201 https://www.grid.ac/institutes/grid.440880.0 schema:alternateName Kavli Institute for the Physics and Mathematics of the Universe
    202 schema:name Department of Physics, University of California, 94720, Berkeley, CA, U.S.A.
    203 Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8568, Kashiwa, Japan
    204 Theoretical Physics Group, LBNL, 94720, Berkeley, CA, U.S.A.
    205 rdf:type schema:Organization
    206 https://www.grid.ac/institutes/grid.4970.a schema:alternateName Royal Holloway University of London
    207 schema:name Royal Holloway, University of London, TW20 0EX, Egham, U.K.
    208 Rutherford Appleton Laboratory, OX11 0QX, Chilton, Didcot, U.K.
    209 rdf:type schema:Organization
    210 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
    211 schema:name Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., OX1 3NP, Oxford, U.K.
    212 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...