Autoencoders for semivisible jet detection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-02-10

AUTHORS

Florencia Canelli, Annapaola de Cosa, Luc Le Pottier, Jeremi Niedziela, Kevin Pedro, Maurizio Pierini

ABSTRACT

The production of dark matter particles from confining dark sectors may lead to many novel experimental signatures. Depending on the details of the theory, dark quark production in proton-proton collisions could result in semivisible jets of particles: collimated sprays of dark hadrons of which only some are detectable by particle collider experiments. The experimental signature is characterised by the presence of reconstructed missing momentum collinear with the visible components of the jets. This complex topology is sensitive to detector inefficiencies and mis-reconstruction that generate artificial missing momentum. With this work, we propose a signal-agnostic strategy to reject ordinary jets and identify semivisible jets via anomaly detection techniques. A deep neural autoencoder network with jet substructure variables as input proves highly useful for analyzing anomalous jets. The study focuses on the semivisible jet signature; however, the technique can apply to any new physics model that predicts signatures with anomalous jets from non-SM particles. More... »

PAGES

74

References to SciGraph publications

  • 2016-04-27. Parameterized neural networks for high-energy physics in EUROPEAN PHYSICAL JOURNAL C
  • 2019-05-07. Variational autoencoders for new physics mining at the Large Hadron Collider in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05-12. Emerging jets in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-04-15. Quark and gluon jet substructure in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-29. LHC searches for dark sector showers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-06-28. Autoencoders for unsupervised anomaly detection in high energy physics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011. Principal Component Analysis in INTERNATIONAL ENCYCLOPEDIA OF STATISTICAL SCIENCE
  • 2018-04-04. Energy flow polynomials: a complete linear basis for jet substructure in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-06. Mahalanobis distance in RESONANCE
  • 2013-06-28. Energy correlation functions for jet substructure in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-02-13. DELPHES 3: a modular framework for fast simulation of a generic collider experiment in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2022)074

    DOI

    http://dx.doi.org/10.1007/jhep02(2022)074

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145466308


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Zurich, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.7400.3", 
              "name": [
                "Department of Physics, University of Zurich, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Canelli", 
            "givenName": "Florencia", 
            "id": "sg:person.0770120324.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770120324.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Cosa", 
            "givenName": "Annapaola", 
            "id": "sg:person.01323403564.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323403564.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley, USA", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "University of California, Berkeley, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le Pottier", 
            "givenName": "Luc", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niedziela", 
            "givenName": "Jeremi", 
            "id": "sg:person.015420232417.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015420232417.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fermi National Accelerator Laboratory, 60510, Batavia, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.417851.e", 
              "name": [
                "Fermi National Accelerator Laboratory, 60510, Batavia, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pedro", 
            "givenName": "Kevin", 
            "id": "sg:person.011740507521.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740507521.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Experimental Physics Department, European Organization for Nuclear Research (CERN), Meyrin, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.9132.9", 
              "name": [
                "Experimental Physics Department, European Organization for Nuclear Research (CERN), Meyrin, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pierini", 
            "givenName": "Maurizio", 
            "id": "sg:person.014032004363.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032004363.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep04(2013)090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010276776", 
              "https://doi.org/10.1007/jhep04(2013)090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093078607", 
              "https://doi.org/10.1007/jhep11(2017)196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2021)161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139213837", 
              "https://doi.org/10.1007/jhep06(2021)161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2014)057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014230218", 
              "https://doi.org/10.1007/jhep02(2014)057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049220616", 
              "https://doi.org/10.1007/jhep05(2015)059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2019)036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114001869", 
              "https://doi.org/10.1007/jhep05(2019)036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-016-4099-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022073057", 
              "https://doi.org/10.1140/epjc/s10052-016-4099-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039877137", 
              "https://doi.org/10.1007/jhep06(2013)108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103184715", 
              "https://doi.org/10.1007/jhep04(2018)013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04898-2_455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053078655", 
              "https://doi.org/10.1007/978-3-642-04898-2_455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02834632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047151047", 
              "https://doi.org/10.1007/bf02834632"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02-10", 
        "datePublishedReg": "2022-02-10", 
        "description": "The production of dark matter particles from confining dark sectors may lead to many novel experimental signatures. Depending on the details of the theory, dark quark production in proton-proton collisions could result in semivisible jets of particles: collimated sprays of dark hadrons of which only some are detectable by particle collider experiments. The experimental signature is characterised by the presence of reconstructed missing momentum collinear with the visible components of the jets. This complex topology is sensitive to detector inefficiencies and mis-reconstruction that generate artificial missing momentum. With this work, we propose a signal-agnostic strategy to reject ordinary jets and identify semivisible jets via anomaly detection techniques. A deep neural autoencoder network with jet substructure variables as input proves highly useful for analyzing anomalous jets. The study focuses on the semivisible jet signature; however, the technique can apply to any new physics model that predicts signatures with anomalous jets from non-SM particles.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2022)074", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7869969", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2022"
          }
        ], 
        "keywords": [
          "experimental signatures", 
          "dark matter particles", 
          "particle collider experiments", 
          "proton-proton collisions", 
          "novel experimental signatures", 
          "new physics models", 
          "jet substructure variables", 
          "matter particles", 
          "dark sector", 
          "collider experiments", 
          "detector inefficiency", 
          "quark production", 
          "substructure variables", 
          "physics models", 
          "jet signatures", 
          "visible components", 
          "jet", 
          "particles", 
          "ordinary jets", 
          "hadrons", 
          "signatures", 
          "collisions", 
          "collinear", 
          "detection techniques", 
          "momentum", 
          "complex topology", 
          "technique", 
          "theory", 
          "experiments", 
          "detail", 
          "detection", 
          "work", 
          "components", 
          "model", 
          "presence", 
          "topology", 
          "production", 
          "spray", 
          "input", 
          "sector", 
          "study", 
          "network", 
          "inefficiency", 
          "variables", 
          "strategies", 
          "autoencoder", 
          "autoencoder network", 
          "anomaly detection techniques"
        ], 
        "name": "Autoencoders for semivisible jet detection", 
        "pagination": "74", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145466308"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2022)074"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2022)074", 
          "https://app.dimensions.ai/details/publication/pub.1145466308"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_953.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2022)074"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2022)074'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2022)074'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2022)074'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2022)074'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      83 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2022)074 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nf8f10842f8cc410da1a278de53c1ad59
    4 schema:citation sg:pub.10.1007/978-3-642-04898-2_455
    5 sg:pub.10.1007/bf02834632
    6 sg:pub.10.1007/jhep02(2014)057
    7 sg:pub.10.1007/jhep04(2013)090
    8 sg:pub.10.1007/jhep04(2018)013
    9 sg:pub.10.1007/jhep05(2015)059
    10 sg:pub.10.1007/jhep05(2019)036
    11 sg:pub.10.1007/jhep06(2013)108
    12 sg:pub.10.1007/jhep06(2021)161
    13 sg:pub.10.1007/jhep11(2017)196
    14 sg:pub.10.1140/epjc/s10052-016-4099-4
    15 schema:datePublished 2022-02-10
    16 schema:datePublishedReg 2022-02-10
    17 schema:description The production of dark matter particles from confining dark sectors may lead to many novel experimental signatures. Depending on the details of the theory, dark quark production in proton-proton collisions could result in semivisible jets of particles: collimated sprays of dark hadrons of which only some are detectable by particle collider experiments. The experimental signature is characterised by the presence of reconstructed missing momentum collinear with the visible components of the jets. This complex topology is sensitive to detector inefficiencies and mis-reconstruction that generate artificial missing momentum. With this work, we propose a signal-agnostic strategy to reject ordinary jets and identify semivisible jets via anomaly detection techniques. A deep neural autoencoder network with jet substructure variables as input proves highly useful for analyzing anomalous jets. The study focuses on the semivisible jet signature; however, the technique can apply to any new physics model that predicts signatures with anomalous jets from non-SM particles.
    18 schema:genre article
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N25e64b6832a64be9a80119538601662a
    21 Ncc6ff760bb9644c4becbe23bd5ed2b7a
    22 sg:journal.1052482
    23 schema:keywords anomaly detection techniques
    24 autoencoder
    25 autoencoder network
    26 collider experiments
    27 collinear
    28 collisions
    29 complex topology
    30 components
    31 dark matter particles
    32 dark sector
    33 detail
    34 detection
    35 detection techniques
    36 detector inefficiency
    37 experimental signatures
    38 experiments
    39 hadrons
    40 inefficiency
    41 input
    42 jet
    43 jet signatures
    44 jet substructure variables
    45 matter particles
    46 model
    47 momentum
    48 network
    49 new physics models
    50 novel experimental signatures
    51 ordinary jets
    52 particle collider experiments
    53 particles
    54 physics models
    55 presence
    56 production
    57 proton-proton collisions
    58 quark production
    59 sector
    60 signatures
    61 spray
    62 strategies
    63 study
    64 substructure variables
    65 technique
    66 theory
    67 topology
    68 variables
    69 visible components
    70 work
    71 schema:name Autoencoders for semivisible jet detection
    72 schema:pagination 74
    73 schema:productId N46b3bbe1686144e08a58d2b67574fe6f
    74 N568fc3773b534663954fead67296de38
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145466308
    76 https://doi.org/10.1007/jhep02(2022)074
    77 schema:sdDatePublished 2022-09-02T16:07
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Nb3b9bc5ce8ca44e58011b70dfedb52c3
    80 schema:url https://doi.org/10.1007/jhep02(2022)074
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N09e15c78b1e84450821ddc1e4efb17f7 rdf:first sg:person.011740507521.54
    85 rdf:rest Nc60ee10fbfd649e7af20fb0e91de91e1
    86 N1257f0a162894da2bb81e4db49b334e8 rdf:first N6bd7542aa06843acabca98cadc080785
    87 rdf:rest N3589be96d31648b8832f50a9421ceab8
    88 N25e64b6832a64be9a80119538601662a schema:volumeNumber 2022
    89 rdf:type schema:PublicationVolume
    90 N3589be96d31648b8832f50a9421ceab8 rdf:first sg:person.015420232417.93
    91 rdf:rest N09e15c78b1e84450821ddc1e4efb17f7
    92 N46b3bbe1686144e08a58d2b67574fe6f schema:name doi
    93 schema:value 10.1007/jhep02(2022)074
    94 rdf:type schema:PropertyValue
    95 N568fc3773b534663954fead67296de38 schema:name dimensions_id
    96 schema:value pub.1145466308
    97 rdf:type schema:PropertyValue
    98 N6bd7542aa06843acabca98cadc080785 schema:affiliation grid-institutes:grid.47840.3f
    99 schema:familyName Le Pottier
    100 schema:givenName Luc
    101 rdf:type schema:Person
    102 N6cdcc8701094447cad659dce02519afa rdf:first sg:person.01323403564.48
    103 rdf:rest N1257f0a162894da2bb81e4db49b334e8
    104 Nb3b9bc5ce8ca44e58011b70dfedb52c3 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 Nc60ee10fbfd649e7af20fb0e91de91e1 rdf:first sg:person.014032004363.32
    107 rdf:rest rdf:nil
    108 Ncc6ff760bb9644c4becbe23bd5ed2b7a schema:issueNumber 2
    109 rdf:type schema:PublicationIssue
    110 Nf8f10842f8cc410da1a278de53c1ad59 rdf:first sg:person.0770120324.00
    111 rdf:rest N6cdcc8701094447cad659dce02519afa
    112 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Physical Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    117 rdf:type schema:DefinedTerm
    118 sg:grant.7869969 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2022)074
    119 rdf:type schema:MonetaryGrant
    120 sg:journal.1052482 schema:issn 1029-8479
    121 1126-6708
    122 schema:name Journal of High Energy Physics
    123 schema:publisher Springer Nature
    124 rdf:type schema:Periodical
    125 sg:person.011740507521.54 schema:affiliation grid-institutes:grid.417851.e
    126 schema:familyName Pedro
    127 schema:givenName Kevin
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740507521.54
    129 rdf:type schema:Person
    130 sg:person.01323403564.48 schema:affiliation grid-institutes:grid.5801.c
    131 schema:familyName de Cosa
    132 schema:givenName Annapaola
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323403564.48
    134 rdf:type schema:Person
    135 sg:person.014032004363.32 schema:affiliation grid-institutes:grid.9132.9
    136 schema:familyName Pierini
    137 schema:givenName Maurizio
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032004363.32
    139 rdf:type schema:Person
    140 sg:person.015420232417.93 schema:affiliation grid-institutes:grid.5801.c
    141 schema:familyName Niedziela
    142 schema:givenName Jeremi
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015420232417.93
    144 rdf:type schema:Person
    145 sg:person.0770120324.00 schema:affiliation grid-institutes:grid.7400.3
    146 schema:familyName Canelli
    147 schema:givenName Florencia
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770120324.00
    149 rdf:type schema:Person
    150 sg:pub.10.1007/978-3-642-04898-2_455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053078655
    151 https://doi.org/10.1007/978-3-642-04898-2_455
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/bf02834632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047151047
    154 https://doi.org/10.1007/bf02834632
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep02(2014)057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014230218
    157 https://doi.org/10.1007/jhep02(2014)057
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep04(2013)090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010276776
    160 https://doi.org/10.1007/jhep04(2013)090
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep04(2018)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103184715
    163 https://doi.org/10.1007/jhep04(2018)013
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/jhep05(2015)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049220616
    166 https://doi.org/10.1007/jhep05(2015)059
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/jhep05(2019)036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114001869
    169 https://doi.org/10.1007/jhep05(2019)036
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/jhep06(2013)108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039877137
    172 https://doi.org/10.1007/jhep06(2013)108
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/jhep06(2021)161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139213837
    175 https://doi.org/10.1007/jhep06(2021)161
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/jhep11(2017)196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093078607
    178 https://doi.org/10.1007/jhep11(2017)196
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1140/epjc/s10052-016-4099-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022073057
    181 https://doi.org/10.1140/epjc/s10052-016-4099-4
    182 rdf:type schema:CreativeWork
    183 grid-institutes:grid.417851.e schema:alternateName Fermi National Accelerator Laboratory, 60510, Batavia, IL, USA
    184 schema:name Fermi National Accelerator Laboratory, 60510, Batavia, IL, USA
    185 rdf:type schema:Organization
    186 grid-institutes:grid.47840.3f schema:alternateName University of California, Berkeley, USA
    187 schema:name University of California, Berkeley, USA
    188 rdf:type schema:Organization
    189 grid-institutes:grid.5801.c schema:alternateName ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
    190 schema:name ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
    191 rdf:type schema:Organization
    192 grid-institutes:grid.7400.3 schema:alternateName Department of Physics, University of Zurich, Zurich, Switzerland
    193 schema:name Department of Physics, University of Zurich, Zurich, Switzerland
    194 rdf:type schema:Organization
    195 grid-institutes:grid.9132.9 schema:alternateName Experimental Physics Department, European Organization for Nuclear Research (CERN), Meyrin, Switzerland
    196 schema:name Experimental Physics Department, European Organization for Nuclear Research (CERN), Meyrin, Switzerland
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...