# S-fold magnetic quivers

Ontology type: schema:ScholarlyArticle      Open Access: True

### Article Info

DATE

2021-02-05

AUTHORS ABSTRACT

Magnetic quivers and Hasse diagrams for Higgs branches of rank r 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document} = 2 SCFTs arising from ℤℓS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S}$$\end{document}-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues like dimension, global symmetry, and the folding parameter ℓ to guess the magnetic quiver. 2) From 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document} = (1, 0) SCFTs as UV completions of 5d marginal theories, and specific FI deformations on their magnetic quiver, which is further folded by ℤℓ. 3) From T-duality of Type IIA brane systems of 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document} = (1, 0) SCFTs and explicit mass deformation of the resulting brane web followed by ℤℓ folding. A choice of the ungauging scheme, either on a long node or on a short node, yields two different moduli spaces related by an orbifold action, thus suggesting a larger set of SCFTs in four dimensions than previously expected. More... »

PAGES

54

### References to SciGraph publications

• 2018-07-16. The small E8 instanton and the Kraft Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-01-24. The Higgs mechanism — Hasse diagrams for symplectic singularities in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-04-27. Fractional quiver W-algebras in LETTERS IN MATHEMATICAL PHYSICS
• 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
• 2021-01-07. New N = 2 superconformal field theories from S-folds in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-12-24. Five-brane webs, Higgs branches and unitary/orthosymplectic magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
• 2015-12-29. The moduli space of instantons on an ALE space from 3dN=4 field theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-07-28. Trifectas for TN in 5d in JOURNAL OF HIGH ENERGY PHYSICS
• 2017-09-28. E8 instantons on type-A ALE spaces and supersymmetric field theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2017-03-28. 4d N =2 theories with disconnected gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-11-24. (Symplectic) leaves and (5d Higgs) branches in the Poly(go)nesian Tropical Rain Forest in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-02-01. Geometric constraints on the space of N = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-02-01. Geometric constraints on the space of N=2 SCFTs. Part III: enhanced Coulomb branches and central charges in JOURNAL OF HIGH ENERGY PHYSICS
• 1998-03-21. Branes at orbifolds versus Hanany Witten in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-02-01. Geometric constraints on the space of N = 2 SCFTs. Part I: physical constraints on relevant deformations in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-01-31. Hilbert series for moduli spaces of instantons on ℂ2/ℤn in JOURNAL OF HIGH ENERGY PHYSICS
• 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}$\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
• 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-07-26. Discrete gauging in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
• 2019-10-03. Homological classification of 4d N = 2 QFT. Rank-1 revisited in JOURNAL OF HIGH ENERGY PHYSICS
• 2017-09-15. On three-dimensional quiver gauge theories of type B in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-12-15. Magnetic lattices for orthosymplectic quivers in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
• 2021-01-12. More on N =2 S-folds in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-09-30. Magnetic quivers for rank 1 theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
• 2002-05-08. On heterotic orbifolds, M-theory and type I' brane engineering in JOURNAL OF HIGH ENERGY PHYSICS
• 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
• 2019-07-24. Erratum to: Magnetic quivers, Higgs branches and 6d N = (1, 0) theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2016-03-14. N=3 four dimensional field theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2001-05. Geometry of the Moment Map for Representations of Quivers in COMPOSITIO MATHEMATICA
• 2020-03-30. Brane webs and magnetic quivers for SQCD in JOURNAL OF HIGH ENERGY PHYSICS
• 2019-01-08. Tropical geometry and five dimensional Higgs branches at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
• 2017-01-23. Compactifications of 5d SCFTs with a twist in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-02-27. Magnetic quivers, Higgs branches, and 6d N = (1, 0) theories — orthogonal and symplectic gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
• 2016-03-04. S1/T2 compactifications of 6d N=1,0 theories and brane webs in JOURNAL OF HIGH ENERGY PHYSICS
• 2009-06-22. Branes, instantons, and Taub-NUT spaces in JOURNAL OF HIGH ENERGY PHYSICS
• 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2009-06-26. Moduli Spaces of Instantons on the Taub-NUT Space in COMMUNICATIONS IN MATHEMATICAL PHYSICS
• 2016-05-16. Expanding the landscape of N = 2 rank 1 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-11-06. Moduli space singularities for 3dN=4 circular quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2015-08-19. A new 5d description of 6d D-type minimal conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
• 2019-04-01. Compactifications of 6dN = (1, 0) SCFTs with non-trivial Stiefel-Whitney classes in JOURNAL OF HIGH ENERGY PHYSICS
• 2015-02-10. 6d Conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-09-30. Ungauging schemes and Coulomb branches of non-simply laced quiver theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-09-24. Hasse diagrams for 3d N = 4 quiver gauge theories — Inversion and the full moduli space in JOURNAL OF HIGH ENERGY PHYSICS
• 2018-09-03. Quiver subtractions in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-06-10. Mirror symmetry in three dimensions via gauged linear quivers in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-10-23. The moduli space of vacua of N=2 class S theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2016-06-08. S-folds and 4d N = 3 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2016-07-15. 6D RG flows and nilpotent hierarchies in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-07-28. Magnetic quivers from brane webs with O5 planes in JOURNAL OF HIGH ENERGY PHYSICS
• 2020-12-03. Towards a classification of rank rN = 2 SCFTs. Part II. Special Kahler stratification of the Coulomb branch in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
• 2021-01-15. Quiver origami: discrete gauging and folding in JOURNAL OF HIGH ENERGY PHYSICS
• 2019-05-29. 6d SCFTs, 5d dualities and Tao web diagrams in JOURNAL OF HIGH ENERGY PHYSICS
• ### Journal

TITLE

Journal of High Energy Physics

ISSUE

2

VOLUME

2021

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep02(2021)054

DOI

http://dx.doi.org/10.1007/jhep02(2021)054

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1135167235

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
],
"type": "Organization"
},
"familyName": "Bourget",
"givenName": "Antoine",
"id": "sg:person.012105771151.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K.",
"id": "http://www.grid.ac/institutes/grid.4991.5",
"name": [
"Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K."
],
"type": "Organization"
},
"familyName": "Giacomelli",
"givenName": "Simone",
"id": "sg:person.015205351263.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205351263.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
],
"type": "Organization"
},
"familyName": "Grimminger",
"givenName": "Julius F.",
"id": "sg:person.012432740125.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
],
"type": "Organization"
},
"familyName": "Hanany",
"givenName": "Amihay",
"id": "sg:person.012155553275.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China",
"id": "http://www.grid.ac/institutes/grid.12527.33",
"name": [
"Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China"
],
"type": "Organization"
},
"familyName": "Sperling",
"givenName": "Marcus",
"id": "sg:person.013671173243.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.",
"id": "http://www.grid.ac/institutes/grid.7445.2",
"name": [
"Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
],
"type": "Organization"
},
"familyName": "Zhong",
"givenName": "Zhenghao",
"id": "sg:person.014651311720.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/jhep02(2018)003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100790257",
"https://doi.org/10.1007/jhep02(2018)003"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2015)054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022076696",
"https://doi.org/10.1007/jhep02(2015)054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2015)097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004298067",
"https://doi.org/10.1007/jhep08(2015)097"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2014)059",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053069294",
"https://doi.org/10.1007/jhep06(2014)059"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2020)204",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129747792",
"https://doi.org/10.1007/jhep07(2020)204"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2020)164",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134131855",
"https://doi.org/10.1007/jhep12(2020)164"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2018)022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109759426",
"https://doi.org/10.1007/jhep11(2018)022"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/06/067",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021240849",
"https://doi.org/10.1088/1126-6708/2009/06/067"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2019)068",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111314197",
"https://doi.org/10.1007/jhep01(2019)068"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2016)082",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031798386",
"https://doi.org/10.1007/jhep07(2016)082"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2016)044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015642179",
"https://doi.org/10.1007/jhep06(2016)044"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2020)124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1132897063",
"https://doi.org/10.1007/jhep11(2020)124"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2020)193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131327365",
"https://doi.org/10.1007/jhep09(2020)193"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2019)013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1121856617",
"https://doi.org/10.1007/jhep10(2019)013"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2018)127",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103637912",
"https://doi.org/10.1007/jhep04(2018)127"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11005-018-1087-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103669468",
"https://doi.org/10.1007/s11005-018-1087-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2020)092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1133541670",
"https://doi.org/10.1007/jhep12(2020)092"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2019)137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1119905953",
"https://doi.org/10.1007/jhep07(2019)137"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2021)086",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134630975",
"https://doi.org/10.1007/jhep01(2021)086"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2021)022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134422126",
"https://doi.org/10.1007/jhep01(2021)022"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2016)175",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040885179",
"https://doi.org/10.1007/jhep11(2016)175"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2020)189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131333828",
"https://doi.org/10.1007/jhep09(2020)189"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1017558904030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016551337",
"https://doi.org/10.1023/a:1017558904030"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2016)024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038390804",
"https://doi.org/10.1007/jhep03(2016)024"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2018)098",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105681214",
"https://doi.org/10.1007/jhep07(2018)098"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2020)022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1133402830",
"https://doi.org/10.1007/jhep12(2020)022"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2018)008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1106581267",
"https://doi.org/10.1007/jhep09(2018)008"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2020)176",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1126020752",
"https://doi.org/10.1007/jhep03(2020)176"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2014)134",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028849658",
"https://doi.org/10.1007/jhep10(2014)134"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2018)061",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105466090",
"https://doi.org/10.1007/jhep07(2018)061"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2019)203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1116013141",
"https://doi.org/10.1007/jhep05(2019)203"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2017)042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084753038",
"https://doi.org/10.1007/jhep04(2017)042"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2020)159",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1131199576",
"https://doi.org/10.1007/jhep09(2020)159"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2020)157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124331365",
"https://doi.org/10.1007/jhep01(2020)157"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2016)083",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053302058",
"https://doi.org/10.1007/jhep03(2016)083"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004476555",
"https://doi.org/10.1007/jhep01(2014)005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2002/05/015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053584273",
"https://doi.org/10.1088/1126-6708/2002/05/015"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2015)174",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008081178",
"https://doi.org/10.1007/jhep12(2015)174"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2020)184",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1125143898",
"https://doi.org/10.1007/jhep02(2020)184"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep04(2019)006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113233666",
"https://doi.org/10.1007/jhep04(2019)006"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-009-0863-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029957613",
"https://doi.org/10.1007/s00220-009-0863-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2020)199",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129714598",
"https://doi.org/10.1007/jhep07(2020)199"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2021)054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134518092",
"https://doi.org/10.1007/jhep01(2021)054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2018)002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100790256",
"https://doi.org/10.1007/jhep02(2018)002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2009/09/052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004902104",
"https://doi.org/10.1088/1126-6708/2009/09/052"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2014)152",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011840461",
"https://doi.org/10.1007/jhep10(2014)152"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2017)067",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091817147",
"https://doi.org/10.1007/jhep09(2017)067"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2017)097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1074198899",
"https://doi.org/10.1007/jhep01(2017)097"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep03(2017)145",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084017822",
"https://doi.org/10.1007/jhep03(2017)145"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/11/050",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013703167",
"https://doi.org/10.1088/1126-6708/2007/11/050"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/01/002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026223761",
"https://doi.org/10.1088/1126-6708/1998/01/002"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/1998/03/003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049975593",
"https://doi.org/10.1088/1126-6708/1998/03/003"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2018)168",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105875050",
"https://doi.org/10.1007/jhep07(2018)168"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2014)182",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036190561",
"https://doi.org/10.1007/jhep01(2014)182"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2016)088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003538586",
"https://doi.org/10.1007/jhep05(2016)088"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2014)103",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036891425",
"https://doi.org/10.1007/jhep12(2014)103"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2017)144",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092002758",
"https://doi.org/10.1007/jhep09(2017)144"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2018)001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100790255",
"https://doi.org/10.1007/jhep02(2018)001"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-02-05",
"datePublishedReg": "2021-02-05",
"description": "Magnetic quivers and Hasse diagrams for Higgs branches of rank r 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal{N}$$\\end{document} = 2 SCFTs arising from \u2124\u2113S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal{S}$$\\end{document}-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues like dimension, global symmetry, and the folding parameter \u2113 to guess the magnetic quiver. 2) From 6d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal{N}$$\\end{document} = (1, 0) SCFTs as UV completions of 5d marginal theories, and specific FI deformations on their magnetic quiver, which is further folded by \u2124\u2113. 3) From T-duality of Type IIA brane systems of 6d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal{N}$$\\end{document} = (1, 0) SCFTs and explicit mass deformation of the resulting brane web followed by \u2124\u2113 folding. A choice of the ungauging scheme, either on a long node or on a short node, yields two different moduli spaces related by an orbifold action, thus suggesting a larger set of SCFTs in four dimensions than previously expected.",
"genre": "article",
"id": "sg:pub.10.1007/jhep02(2021)054",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8672070",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.5493767",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6502537",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1052482",
"issn": [
"1126-6708",
"1029-8479"
],
"name": "Journal of High Energy Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"magnetic quivers",
"different moduli spaces",
"T-duality",
"Higgs branch",
"global symmetry",
"moduli space",
"brane system",
"quivers",
"SCFTs",
"UV completion",
"orbifold action",
"Hasse diagram",
"brane webs",
"mass deformation",
"large set",
"symmetry",
"fold construction",
"different methods",
"dimensions",
"theory",
"scheme",
"long nodes",
"space",
"diagram",
"nodes",
"parameters",
"set",
"deformation",
"system",
"short nodes",
"branches",
"construction",
"choice",
"marginal theory",
"completion",
"action",
"clues",
"folding",
"Web",
"method"
],
"name": "S-fold magnetic quivers",
"pagination": "54",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1135167235"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/jhep02(2021)054"
]
}
],
"sameAs": [
"https://doi.org/10.1007/jhep02(2021)054",
"https://app.dimensions.ai/details/publication/pub.1135167235"
],
"sdDataset": "articles",
"sdDatePublished": "2022-12-01T06:43",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_916.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/jhep02(2021)054"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'

This table displays all metadata directly associated to this object as RDF triples.

376 TRIPLES      21 PREDICATES      122 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 schema:author N990097f6bb8945bfaf70a799158f7736
4 schema:citation sg:pub.10.1007/jhep01(2014)005
5 sg:pub.10.1007/jhep01(2014)182
6 sg:pub.10.1007/jhep01(2017)097
7 sg:pub.10.1007/jhep01(2019)068
8 sg:pub.10.1007/jhep01(2020)157
9 sg:pub.10.1007/jhep01(2021)022
10 sg:pub.10.1007/jhep01(2021)054
11 sg:pub.10.1007/jhep01(2021)086
12 sg:pub.10.1007/jhep02(2015)054
13 sg:pub.10.1007/jhep02(2018)001
14 sg:pub.10.1007/jhep02(2018)002
15 sg:pub.10.1007/jhep02(2018)003
16 sg:pub.10.1007/jhep02(2020)184
17 sg:pub.10.1007/jhep03(2016)024
18 sg:pub.10.1007/jhep03(2016)083
19 sg:pub.10.1007/jhep03(2017)145
20 sg:pub.10.1007/jhep03(2020)176
21 sg:pub.10.1007/jhep04(2017)042
22 sg:pub.10.1007/jhep04(2018)127
23 sg:pub.10.1007/jhep04(2019)006
24 sg:pub.10.1007/jhep05(2016)088
25 sg:pub.10.1007/jhep05(2019)203
26 sg:pub.10.1007/jhep06(2014)059
27 sg:pub.10.1007/jhep06(2016)044
28 sg:pub.10.1007/jhep07(2016)082
29 sg:pub.10.1007/jhep07(2018)061
30 sg:pub.10.1007/jhep07(2018)098
31 sg:pub.10.1007/jhep07(2018)168
32 sg:pub.10.1007/jhep07(2019)137
33 sg:pub.10.1007/jhep07(2020)199
34 sg:pub.10.1007/jhep07(2020)204
35 sg:pub.10.1007/jhep08(2015)097
36 sg:pub.10.1007/jhep09(2017)067
37 sg:pub.10.1007/jhep09(2017)144
38 sg:pub.10.1007/jhep09(2018)008
39 sg:pub.10.1007/jhep09(2020)159
40 sg:pub.10.1007/jhep09(2020)189
41 sg:pub.10.1007/jhep09(2020)193
42 sg:pub.10.1007/jhep10(2014)134
43 sg:pub.10.1007/jhep10(2014)152
44 sg:pub.10.1007/jhep10(2019)013
45 sg:pub.10.1007/jhep11(2016)175
46 sg:pub.10.1007/jhep11(2018)022
47 sg:pub.10.1007/jhep11(2020)124
48 sg:pub.10.1007/jhep12(2014)103
49 sg:pub.10.1007/jhep12(2015)174
50 sg:pub.10.1007/jhep12(2020)022
51 sg:pub.10.1007/jhep12(2020)092
52 sg:pub.10.1007/jhep12(2020)164
53 sg:pub.10.1007/s00220-009-0863-8
54 sg:pub.10.1007/s11005-018-1087-7
55 sg:pub.10.1023/a:1017558904030
56 sg:pub.10.1088/1126-6708/1998/01/002
57 sg:pub.10.1088/1126-6708/1998/03/003
58 sg:pub.10.1088/1126-6708/2002/05/015
59 sg:pub.10.1088/1126-6708/2007/11/050
60 sg:pub.10.1088/1126-6708/2009/06/067
61 sg:pub.10.1088/1126-6708/2009/09/052
62 schema:datePublished 2021-02-05
63 schema:datePublishedReg 2021-02-05
64 schema:description Magnetic quivers and Hasse diagrams for Higgs branches of rank r 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document} = 2 SCFTs arising from ℤℓS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S}$$\end{document}-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues like dimension, global symmetry, and the folding parameter ℓ to guess the magnetic quiver. 2) From 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document} = (1, 0) SCFTs as UV completions of 5d marginal theories, and specific FI deformations on their magnetic quiver, which is further folded by ℤℓ. 3) From T-duality of Type IIA brane systems of 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document} = (1, 0) SCFTs and explicit mass deformation of the resulting brane web followed by ℤℓ folding. A choice of the ungauging scheme, either on a long node or on a short node, yields two different moduli spaces related by an orbifold action, thus suggesting a larger set of SCFTs in four dimensions than previously expected.
65 schema:genre article
66 schema:isAccessibleForFree true
67 schema:isPartOf N88748ab78fd04ebd8ff41dfbeaeb10ed
68 Nf3504d1c5f6646d3bbaa3cfca107e0be
69 sg:journal.1052482
70 schema:keywords Hasse diagram
71 Higgs branch
72 SCFTs
73 T-duality
74 UV completion
75 Web
76 action
77 branches
78 brane system
79 brane webs
80 choice
81 clues
82 completion
83 construction
84 deformation
85 diagram
86 different methods
87 different moduli spaces
88 dimensions
89 fold construction
90 folding
91 global symmetry
92 large set
93 long nodes
94 magnetic quivers
95 marginal theory
96 mass deformation
97 method
98 moduli space
99 nodes
100 orbifold action
101 parameters
102 quivers
103 scheme
104 set
105 short nodes
106 space
107 symmetry
108 system
109 theory
110 schema:name S-fold magnetic quivers
111 schema:pagination 54
112 schema:productId N74632738c8d44c2181ba7cddf59b16d1
113 Nc2b6c48652a045a794bd2df460cba607
114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135167235
115 https://doi.org/10.1007/jhep02(2021)054
116 schema:sdDatePublished 2022-12-01T06:43
118 schema:sdPublisher Nf5603304098148ee951a720b0cce4f4c
119 schema:url https://doi.org/10.1007/jhep02(2021)054
121 sgo:sdDataset articles
122 rdf:type schema:ScholarlyArticle
123 N74632738c8d44c2181ba7cddf59b16d1 schema:name dimensions_id
124 schema:value pub.1135167235
125 rdf:type schema:PropertyValue
127 rdf:type schema:PublicationVolume
128 N990097f6bb8945bfaf70a799158f7736 rdf:first sg:person.012105771151.34
129 rdf:rest Nccfe346b04a94980b527741983e6473d
130 Na3c249d767954a8b93255ab1c0d775e7 rdf:first sg:person.012155553275.80
131 rdf:rest Ndfa2c5b01b8f4d109f1493e224049f50
132 Nc2b6c48652a045a794bd2df460cba607 schema:name doi
133 schema:value 10.1007/jhep02(2021)054
134 rdf:type schema:PropertyValue
135 Nccfe346b04a94980b527741983e6473d rdf:first sg:person.015205351263.29
136 rdf:rest Nfbcce59ece3d47849463c8163833ff7a
137 Ndb940788be5043628a4a71318e5dcb83 rdf:first sg:person.014651311720.05
138 rdf:rest rdf:nil
139 Ndfa2c5b01b8f4d109f1493e224049f50 rdf:first sg:person.013671173243.88
140 rdf:rest Ndb940788be5043628a4a71318e5dcb83
141 Nf3504d1c5f6646d3bbaa3cfca107e0be schema:issueNumber 2
142 rdf:type schema:PublicationIssue
143 Nf5603304098148ee951a720b0cce4f4c schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 Nfbcce59ece3d47849463c8163833ff7a rdf:first sg:person.012432740125.61
146 rdf:rest Na3c249d767954a8b93255ab1c0d775e7
147 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
148 schema:name Mathematical Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
151 schema:name Pure Mathematics
152 rdf:type schema:DefinedTerm
153 sg:grant.5493767 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2021)054
154 rdf:type schema:MonetaryGrant
155 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2021)054
156 rdf:type schema:MonetaryGrant
157 sg:grant.8672070 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2021)054
158 rdf:type schema:MonetaryGrant
159 sg:journal.1052482 schema:issn 1029-8479
160 1126-6708
161 schema:name Journal of High Energy Physics
162 schema:publisher Springer Nature
163 rdf:type schema:Periodical
164 sg:person.012105771151.34 schema:affiliation grid-institutes:grid.7445.2
165 schema:familyName Bourget
166 schema:givenName Antoine
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34
168 rdf:type schema:Person
169 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
170 schema:familyName Hanany
171 schema:givenName Amihay
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
173 rdf:type schema:Person
174 sg:person.012432740125.61 schema:affiliation grid-institutes:grid.7445.2
175 schema:familyName Grimminger
176 schema:givenName Julius F.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61
178 rdf:type schema:Person
179 sg:person.013671173243.88 schema:affiliation grid-institutes:grid.12527.33
180 schema:familyName Sperling
181 schema:givenName Marcus
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
183 rdf:type schema:Person
184 sg:person.014651311720.05 schema:affiliation grid-institutes:grid.7445.2
185 schema:familyName Zhong
186 schema:givenName Zhenghao
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05
188 rdf:type schema:Person
189 sg:person.015205351263.29 schema:affiliation grid-institutes:grid.4991.5
190 schema:familyName Giacomelli
191 schema:givenName Simone
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205351263.29
193 rdf:type schema:Person
194 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
195 https://doi.org/10.1007/jhep01(2014)005
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/jhep01(2014)182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036190561
198 https://doi.org/10.1007/jhep01(2014)182
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/jhep01(2017)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074198899
201 https://doi.org/10.1007/jhep01(2017)097
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/jhep01(2019)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314197
204 https://doi.org/10.1007/jhep01(2019)068
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/jhep01(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124331365
207 https://doi.org/10.1007/jhep01(2020)157
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/jhep01(2021)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134422126
210 https://doi.org/10.1007/jhep01(2021)022
211 rdf:type schema:CreativeWork
212 sg:pub.10.1007/jhep01(2021)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134518092
213 https://doi.org/10.1007/jhep01(2021)054
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/jhep01(2021)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134630975
216 https://doi.org/10.1007/jhep01(2021)086
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/jhep02(2015)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076696
219 https://doi.org/10.1007/jhep02(2015)054
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/jhep02(2018)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790255
222 https://doi.org/10.1007/jhep02(2018)001
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/jhep02(2018)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790256
225 https://doi.org/10.1007/jhep02(2018)002
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/jhep02(2018)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790257
228 https://doi.org/10.1007/jhep02(2018)003
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/jhep02(2020)184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125143898
231 https://doi.org/10.1007/jhep02(2020)184
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/jhep03(2016)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390804
234 https://doi.org/10.1007/jhep03(2016)024
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/jhep03(2016)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053302058
237 https://doi.org/10.1007/jhep03(2016)083
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/jhep03(2017)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017822
240 https://doi.org/10.1007/jhep03(2017)145
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/jhep03(2020)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126020752
243 https://doi.org/10.1007/jhep03(2020)176
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
246 https://doi.org/10.1007/jhep04(2017)042
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
249 https://doi.org/10.1007/jhep04(2018)127
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/jhep04(2019)006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113233666
252 https://doi.org/10.1007/jhep04(2019)006
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/jhep05(2016)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003538586
255 https://doi.org/10.1007/jhep05(2016)088
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/jhep05(2019)203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116013141
258 https://doi.org/10.1007/jhep05(2019)203
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/jhep06(2014)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069294
261 https://doi.org/10.1007/jhep06(2014)059
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/jhep06(2016)044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015642179
264 https://doi.org/10.1007/jhep06(2016)044
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/jhep07(2016)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798386
267 https://doi.org/10.1007/jhep07(2016)082
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
270 https://doi.org/10.1007/jhep07(2018)061
271 rdf:type schema:CreativeWork
272 sg:pub.10.1007/jhep07(2018)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681214
273 https://doi.org/10.1007/jhep07(2018)098
274 rdf:type schema:CreativeWork
275 sg:pub.10.1007/jhep07(2018)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
276 https://doi.org/10.1007/jhep07(2018)168
277 rdf:type schema:CreativeWork
278 sg:pub.10.1007/jhep07(2019)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119905953
279 https://doi.org/10.1007/jhep07(2019)137
280 rdf:type schema:CreativeWork
281 sg:pub.10.1007/jhep07(2020)199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129714598
282 https://doi.org/10.1007/jhep07(2020)199
283 rdf:type schema:CreativeWork
284 sg:pub.10.1007/jhep07(2020)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129747792
285 https://doi.org/10.1007/jhep07(2020)204
286 rdf:type schema:CreativeWork
287 sg:pub.10.1007/jhep08(2015)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004298067
288 https://doi.org/10.1007/jhep08(2015)097
289 rdf:type schema:CreativeWork
290 sg:pub.10.1007/jhep09(2017)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091817147
291 https://doi.org/10.1007/jhep09(2017)067
292 rdf:type schema:CreativeWork
293 sg:pub.10.1007/jhep09(2017)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092002758
294 https://doi.org/10.1007/jhep09(2017)144
295 rdf:type schema:CreativeWork
296 sg:pub.10.1007/jhep09(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
297 https://doi.org/10.1007/jhep09(2018)008
298 rdf:type schema:CreativeWork
299 sg:pub.10.1007/jhep09(2020)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131199576
300 https://doi.org/10.1007/jhep09(2020)159
301 rdf:type schema:CreativeWork
302 sg:pub.10.1007/jhep09(2020)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131333828
303 https://doi.org/10.1007/jhep09(2020)189
304 rdf:type schema:CreativeWork
305 sg:pub.10.1007/jhep09(2020)193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131327365
306 https://doi.org/10.1007/jhep09(2020)193
307 rdf:type schema:CreativeWork
308 sg:pub.10.1007/jhep10(2014)134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028849658
309 https://doi.org/10.1007/jhep10(2014)134
310 rdf:type schema:CreativeWork
311 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
312 https://doi.org/10.1007/jhep10(2014)152
313 rdf:type schema:CreativeWork
314 sg:pub.10.1007/jhep10(2019)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121856617
315 https://doi.org/10.1007/jhep10(2019)013
316 rdf:type schema:CreativeWork
317 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
318 https://doi.org/10.1007/jhep11(2016)175
319 rdf:type schema:CreativeWork
320 sg:pub.10.1007/jhep11(2018)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759426
321 https://doi.org/10.1007/jhep11(2018)022
322 rdf:type schema:CreativeWork
323 sg:pub.10.1007/jhep11(2020)124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132897063
324 https://doi.org/10.1007/jhep11(2020)124
325 rdf:type schema:CreativeWork
326 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
327 https://doi.org/10.1007/jhep12(2014)103
328 rdf:type schema:CreativeWork
329 sg:pub.10.1007/jhep12(2015)174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081178
330 https://doi.org/10.1007/jhep12(2015)174
331 rdf:type schema:CreativeWork
332 sg:pub.10.1007/jhep12(2020)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133402830
333 https://doi.org/10.1007/jhep12(2020)022
334 rdf:type schema:CreativeWork
335 sg:pub.10.1007/jhep12(2020)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133541670
336 https://doi.org/10.1007/jhep12(2020)092
337 rdf:type schema:CreativeWork
338 sg:pub.10.1007/jhep12(2020)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134131855
339 https://doi.org/10.1007/jhep12(2020)164
340 rdf:type schema:CreativeWork
341 sg:pub.10.1007/s00220-009-0863-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029957613
342 https://doi.org/10.1007/s00220-009-0863-8
343 rdf:type schema:CreativeWork
344 sg:pub.10.1007/s11005-018-1087-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103669468
345 https://doi.org/10.1007/s11005-018-1087-7
346 rdf:type schema:CreativeWork
347 sg:pub.10.1023/a:1017558904030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016551337
348 https://doi.org/10.1023/a:1017558904030
349 rdf:type schema:CreativeWork
350 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
351 https://doi.org/10.1088/1126-6708/1998/01/002
352 rdf:type schema:CreativeWork
353 sg:pub.10.1088/1126-6708/1998/03/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049975593
354 https://doi.org/10.1088/1126-6708/1998/03/003
355 rdf:type schema:CreativeWork
356 sg:pub.10.1088/1126-6708/2002/05/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053584273
357 https://doi.org/10.1088/1126-6708/2002/05/015
358 rdf:type schema:CreativeWork
359 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
360 https://doi.org/10.1088/1126-6708/2007/11/050
361 rdf:type schema:CreativeWork
362 sg:pub.10.1088/1126-6708/2009/06/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021240849
363 https://doi.org/10.1088/1126-6708/2009/06/067
364 rdf:type schema:CreativeWork
365 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
366 https://doi.org/10.1088/1126-6708/2009/09/052
367 rdf:type schema:CreativeWork
368 grid-institutes:grid.12527.33 schema:alternateName Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China
369 schema:name Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China
370 rdf:type schema:Organization
371 grid-institutes:grid.4991.5 schema:alternateName Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K.
372 schema:name Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K.
373 rdf:type schema:Organization
374 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
375 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
376 rdf:type schema:Organization