S-fold magnetic quivers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-02-05

AUTHORS

Antoine Bourget, Simone Giacomelli, Julius F. Grimminger, Amihay Hanany, Marcus Sperling, Zhenghao Zhong

ABSTRACT

Magnetic quivers and Hasse diagrams for Higgs branches of rank r 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs arising from ℤℓS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document}-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues like dimension, global symmetry, and the folding parameter ℓ to guess the magnetic quiver. 2) From 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) SCFTs as UV completions of 5d marginal theories, and specific FI deformations on their magnetic quiver, which is further folded by ℤℓ. 3) From T-duality of Type IIA brane systems of 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) SCFTs and explicit mass deformation of the resulting brane web followed by ℤℓ folding. A choice of the ungauging scheme, either on a long node or on a short node, yields two different moduli spaces related by an orbifold action, thus suggesting a larger set of SCFTs in four dimensions than previously expected. More... »

PAGES

54

References to SciGraph publications

  • 2018-07-16. The small E8 instanton and the Kraft Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-01-24. The Higgs mechanism — Hasse diagrams for symplectic singularities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-27. Fractional quiver W-algebras in LETTERS IN MATHEMATICAL PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-01-07. New N = 2 superconformal field theories from S-folds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-12-24. Five-brane webs, Higgs branches and unitary/orthosymplectic magnetic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-29. The moduli space of instantons on an ALE space from 3dN=4 field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Trifectas for TN in 5d in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-28. E8 instantons on type-A ALE spaces and supersymmetric field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-03-28. 4d N =2 theories with disconnected gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-11-24. (Symplectic) leaves and (5d Higgs) branches in the Poly(go)nesian Tropical Rain Forest in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-01. Geometric constraints on the space of N = 2 SCFTs. Part II: construction of special Kähler geometries and RG flows in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-01. Geometric constraints on the space of N=2 SCFTs. Part III: enhanced Coulomb branches and central charges in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-03-21. Branes at orbifolds versus Hanany Witten in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02-01. Geometric constraints on the space of N = 2 SCFTs. Part I: physical constraints on relevant deformations in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-31. Hilbert series for moduli spaces of instantons on ℂ2/ℤn in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-01-06. Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-26. Discrete gauging in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-10-03. Homological classification of 4d N = 2 QFT. Rank-1 revisited in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-15. On three-dimensional quiver gauge theories of type B in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-12-15. Magnetic lattices for orthosymplectic quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-23. Compactifications of 5d SCFTs with a twist in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-01-12. More on N =2 S-folds in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-30. Magnetic quivers for rank 1 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-05-08. On heterotic orbifolds, M-theory and type I' brane engineering in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-07-24. Erratum to: Magnetic quivers, Higgs branches and 6d N = (1, 0) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-14. N=3 four dimensional field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2001-05. Geometry of the Moment Map for Representations of Quivers in COMPOSITIO MATHEMATICA
  • 2020-03-30. Brane webs and magnetic quivers for SQCD in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-08. Tropical geometry and five dimensional Higgs branches at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-02-27. Magnetic quivers, Higgs branches, and 6d N = (1, 0) theories — orthogonal and symplectic gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-03-04. S1/T2 compactifications of 6d N=1,0 theories and brane webs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-06-22. Branes, instantons, and Taub-NUT spaces in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-06-26. Moduli Spaces of Instantons on the Taub-NUT Space in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2016-05-16. Expanding the landscape of N = 2 rank 1 SCFTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-11-06. Moduli space singularities for 3dN=4 circular quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-08-19. A new 5d description of 6d D-type minimal conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-04-01. Compactifications of 6dN = (1, 0) SCFTs with non-trivial Stiefel-Whitney classes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-02-10. 6d Conformal matter in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-30. Ungauging schemes and Coulomb branches of non-simply laced quiver theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-09-24. Hasse diagrams for 3d N = 4 quiver gauge theories — Inversion and the full moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-09-03. Quiver subtractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-06-10. Mirror symmetry in three dimensions via gauged linear quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-23. The moduli space of vacua of N=2 class S theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-08. S-folds and 4d N = 3 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-07-15. 6D RG flows and nilpotent hierarchies in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-07-28. Magnetic quivers from brane webs with O5 planes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 2020-12-03. Towards a classification of rank rN = 2 SCFTs. Part II. Special Kahler stratification of the Coulomb branch in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2021-01-15. Quiver origami: discrete gauging and folding in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-05-29. 6d SCFTs, 5d dualities and Tao web diagrams in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2021)054

    DOI

    http://dx.doi.org/10.1007/jhep02(2021)054

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1135167235


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bourget", 
            "givenName": "Antoine", 
            "id": "sg:person.012105771151.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giacomelli", 
            "givenName": "Simone", 
            "id": "sg:person.015205351263.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205351263.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grimminger", 
            "givenName": "Julius F.", 
            "id": "sg:person.012432740125.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sperling", 
            "givenName": "Marcus", 
            "id": "sg:person.013671173243.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhong", 
            "givenName": "Zhenghao", 
            "id": "sg:person.014651311720.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092002758", 
              "https://doi.org/10.1007/jhep09(2017)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2016)088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003538586", 
              "https://doi.org/10.1007/jhep05(2016)088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2021)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134518092", 
              "https://doi.org/10.1007/jhep01(2021)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2017)145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084017822", 
              "https://doi.org/10.1007/jhep03(2017)145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2018)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109759426", 
              "https://doi.org/10.1007/jhep11(2018)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2015)054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022076696", 
              "https://doi.org/10.1007/jhep02(2015)054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036190561", 
              "https://doi.org/10.1007/jhep01(2014)182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105875050", 
              "https://doi.org/10.1007/jhep07(2018)168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100790257", 
              "https://doi.org/10.1007/jhep02(2018)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004298067", 
              "https://doi.org/10.1007/jhep08(2015)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091817147", 
              "https://doi.org/10.1007/jhep09(2017)067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133541670", 
              "https://doi.org/10.1007/jhep12(2020)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2020)157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124331365", 
              "https://doi.org/10.1007/jhep01(2020)157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/05/015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053584273", 
              "https://doi.org/10.1088/1126-6708/2002/05/015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008081178", 
              "https://doi.org/10.1007/jhep12(2015)174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-018-1087-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103669468", 
              "https://doi.org/10.1007/s11005-018-1087-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100790256", 
              "https://doi.org/10.1007/jhep02(2018)002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134131855", 
              "https://doi.org/10.1007/jhep12(2020)164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129714598", 
              "https://doi.org/10.1007/jhep07(2020)199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2020)184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125143898", 
              "https://doi.org/10.1007/jhep02(2020)184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0863-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029957613", 
              "https://doi.org/10.1007/s00220-009-0863-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131333828", 
              "https://doi.org/10.1007/jhep09(2020)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2020)204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129747792", 
              "https://doi.org/10.1007/jhep07(2020)204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111314197", 
              "https://doi.org/10.1007/jhep01(2019)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1017558904030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016551337", 
              "https://doi.org/10.1023/a:1017558904030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2020)124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132897063", 
              "https://doi.org/10.1007/jhep11(2020)124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038390804", 
              "https://doi.org/10.1007/jhep03(2016)024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2021)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134422126", 
              "https://doi.org/10.1007/jhep01(2021)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/06/067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021240849", 
              "https://doi.org/10.1088/1126-6708/2009/06/067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105681214", 
              "https://doi.org/10.1007/jhep07(2018)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2018)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106581267", 
              "https://doi.org/10.1007/jhep09(2018)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131327365", 
              "https://doi.org/10.1007/jhep09(2020)193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2016)082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031798386", 
              "https://doi.org/10.1007/jhep07(2016)082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2019)013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1121856617", 
              "https://doi.org/10.1007/jhep10(2019)013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028849658", 
              "https://doi.org/10.1007/jhep10(2014)134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2021)086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134630975", 
              "https://doi.org/10.1007/jhep01(2021)086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2020)176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126020752", 
              "https://doi.org/10.1007/jhep03(2020)176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/03/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049975593", 
              "https://doi.org/10.1088/1126-6708/1998/03/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2019)137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119905953", 
              "https://doi.org/10.1007/jhep07(2019)137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2020)159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131199576", 
              "https://doi.org/10.1007/jhep09(2020)159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015642179", 
              "https://doi.org/10.1007/jhep06(2016)044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074198899", 
              "https://doi.org/10.1007/jhep01(2017)097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2019)203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116013141", 
              "https://doi.org/10.1007/jhep05(2019)203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2020)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1133402830", 
              "https://doi.org/10.1007/jhep12(2020)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2016)083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053302058", 
              "https://doi.org/10.1007/jhep03(2016)083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100790255", 
              "https://doi.org/10.1007/jhep02(2018)001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/01/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026223761", 
              "https://doi.org/10.1088/1126-6708/1998/01/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2019)006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113233666", 
              "https://doi.org/10.1007/jhep04(2019)006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2014)059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053069294", 
              "https://doi.org/10.1007/jhep06(2014)059"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-02-05", 
        "datePublishedReg": "2021-02-05", 
        "description": "Magnetic quivers and Hasse diagrams for Higgs branches of rank r 4d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 2 SCFTs arising from \u2124\u2113S\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{S} $$\\end{document}-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues like dimension, global symmetry, and the folding parameter \u2113 to guess the magnetic quiver. 2) From 6d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = (1, 0) SCFTs as UV completions of 5d marginal theories, and specific FI deformations on their magnetic quiver, which is further folded by \u2124\u2113. 3) From T-duality of Type IIA brane systems of 6d N\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = (1, 0) SCFTs and explicit mass deformation of the resulting brane web followed by \u2124\u2113 folding. A choice of the ungauging scheme, either on a long node or on a short node, yields two different moduli spaces related by an orbifold action, thus suggesting a larger set of SCFTs in four dimensions than previously expected.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2021)054", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8672070", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5493767", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2021"
          }
        ], 
        "keywords": [
          "magnetic quivers", 
          "different moduli spaces", 
          "T-duality", 
          "Higgs branch", 
          "global symmetry", 
          "moduli space", 
          "brane system", 
          "quivers", 
          "SCFTs", 
          "UV completion", 
          "orbifold action", 
          "Hasse diagram", 
          "brane webs", 
          "mass deformation", 
          "large set", 
          "symmetry", 
          "fold construction", 
          "different methods", 
          "dimensions", 
          "theory", 
          "scheme", 
          "long nodes", 
          "space", 
          "diagram", 
          "nodes", 
          "parameters", 
          "set", 
          "deformation", 
          "system", 
          "short nodes", 
          "branches", 
          "construction", 
          "choice", 
          "marginal theory", 
          "completion", 
          "action", 
          "clues", 
          "folding", 
          "Web", 
          "method"
        ], 
        "name": "S-fold magnetic quivers", 
        "pagination": "54", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1135167235"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2021)054"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2021)054", 
          "https://app.dimensions.ai/details/publication/pub.1135167235"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_916.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2021)054"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2021)054'


     

    This table displays all metadata directly associated to this object as RDF triples.

    376 TRIPLES      21 PREDICATES      122 URIs      56 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2021)054 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N20576f3711d24770a80ac4fa52b2599a
    4 schema:citation sg:pub.10.1007/jhep01(2014)005
    5 sg:pub.10.1007/jhep01(2014)182
    6 sg:pub.10.1007/jhep01(2017)097
    7 sg:pub.10.1007/jhep01(2019)068
    8 sg:pub.10.1007/jhep01(2020)157
    9 sg:pub.10.1007/jhep01(2021)022
    10 sg:pub.10.1007/jhep01(2021)054
    11 sg:pub.10.1007/jhep01(2021)086
    12 sg:pub.10.1007/jhep02(2015)054
    13 sg:pub.10.1007/jhep02(2018)001
    14 sg:pub.10.1007/jhep02(2018)002
    15 sg:pub.10.1007/jhep02(2018)003
    16 sg:pub.10.1007/jhep02(2020)184
    17 sg:pub.10.1007/jhep03(2016)024
    18 sg:pub.10.1007/jhep03(2016)083
    19 sg:pub.10.1007/jhep03(2017)145
    20 sg:pub.10.1007/jhep03(2020)176
    21 sg:pub.10.1007/jhep04(2017)042
    22 sg:pub.10.1007/jhep04(2018)127
    23 sg:pub.10.1007/jhep04(2019)006
    24 sg:pub.10.1007/jhep05(2016)088
    25 sg:pub.10.1007/jhep05(2019)203
    26 sg:pub.10.1007/jhep06(2014)059
    27 sg:pub.10.1007/jhep06(2016)044
    28 sg:pub.10.1007/jhep07(2016)082
    29 sg:pub.10.1007/jhep07(2018)061
    30 sg:pub.10.1007/jhep07(2018)098
    31 sg:pub.10.1007/jhep07(2018)168
    32 sg:pub.10.1007/jhep07(2019)137
    33 sg:pub.10.1007/jhep07(2020)199
    34 sg:pub.10.1007/jhep07(2020)204
    35 sg:pub.10.1007/jhep08(2015)097
    36 sg:pub.10.1007/jhep09(2017)067
    37 sg:pub.10.1007/jhep09(2017)144
    38 sg:pub.10.1007/jhep09(2018)008
    39 sg:pub.10.1007/jhep09(2020)159
    40 sg:pub.10.1007/jhep09(2020)189
    41 sg:pub.10.1007/jhep09(2020)193
    42 sg:pub.10.1007/jhep10(2014)134
    43 sg:pub.10.1007/jhep10(2014)152
    44 sg:pub.10.1007/jhep10(2019)013
    45 sg:pub.10.1007/jhep11(2016)175
    46 sg:pub.10.1007/jhep11(2018)022
    47 sg:pub.10.1007/jhep11(2020)124
    48 sg:pub.10.1007/jhep12(2014)103
    49 sg:pub.10.1007/jhep12(2015)174
    50 sg:pub.10.1007/jhep12(2020)022
    51 sg:pub.10.1007/jhep12(2020)092
    52 sg:pub.10.1007/jhep12(2020)164
    53 sg:pub.10.1007/s00220-009-0863-8
    54 sg:pub.10.1007/s11005-018-1087-7
    55 sg:pub.10.1023/a:1017558904030
    56 sg:pub.10.1088/1126-6708/1998/01/002
    57 sg:pub.10.1088/1126-6708/1998/03/003
    58 sg:pub.10.1088/1126-6708/2002/05/015
    59 sg:pub.10.1088/1126-6708/2007/11/050
    60 sg:pub.10.1088/1126-6708/2009/06/067
    61 sg:pub.10.1088/1126-6708/2009/09/052
    62 schema:datePublished 2021-02-05
    63 schema:datePublishedReg 2021-02-05
    64 schema:description Magnetic quivers and Hasse diagrams for Higgs branches of rank r 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs arising from ℤℓS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document}-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues like dimension, global symmetry, and the folding parameter ℓ to guess the magnetic quiver. 2) From 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) SCFTs as UV completions of 5d marginal theories, and specific FI deformations on their magnetic quiver, which is further folded by ℤℓ. 3) From T-duality of Type IIA brane systems of 6d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) SCFTs and explicit mass deformation of the resulting brane web followed by ℤℓ folding. A choice of the ungauging scheme, either on a long node or on a short node, yields two different moduli spaces related by an orbifold action, thus suggesting a larger set of SCFTs in four dimensions than previously expected.
    65 schema:genre article
    66 schema:isAccessibleForFree true
    67 schema:isPartOf N8f23b27d684f41bba3d7d89acf0fcb64
    68 N9fe579b759ca47e1a9b9de034fbe4625
    69 sg:journal.1052482
    70 schema:keywords Hasse diagram
    71 Higgs branch
    72 SCFTs
    73 T-duality
    74 UV completion
    75 Web
    76 action
    77 branches
    78 brane system
    79 brane webs
    80 choice
    81 clues
    82 completion
    83 construction
    84 deformation
    85 diagram
    86 different methods
    87 different moduli spaces
    88 dimensions
    89 fold construction
    90 folding
    91 global symmetry
    92 large set
    93 long nodes
    94 magnetic quivers
    95 marginal theory
    96 mass deformation
    97 method
    98 moduli space
    99 nodes
    100 orbifold action
    101 parameters
    102 quivers
    103 scheme
    104 set
    105 short nodes
    106 space
    107 symmetry
    108 system
    109 theory
    110 schema:name S-fold magnetic quivers
    111 schema:pagination 54
    112 schema:productId N1048c0cfaa0e468cabd1526f23c4bde2
    113 Nd82ecc13484e416390f5738c97b3f634
    114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135167235
    115 https://doi.org/10.1007/jhep02(2021)054
    116 schema:sdDatePublished 2022-09-02T16:07
    117 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    118 schema:sdPublisher Nfecf1b97641f40deb3c0e1b5d3f9167c
    119 schema:url https://doi.org/10.1007/jhep02(2021)054
    120 sgo:license sg:explorer/license/
    121 sgo:sdDataset articles
    122 rdf:type schema:ScholarlyArticle
    123 N1048c0cfaa0e468cabd1526f23c4bde2 schema:name doi
    124 schema:value 10.1007/jhep02(2021)054
    125 rdf:type schema:PropertyValue
    126 N20576f3711d24770a80ac4fa52b2599a rdf:first sg:person.012105771151.34
    127 rdf:rest N26bda396848c4671b2e8a962c163b0d7
    128 N26bda396848c4671b2e8a962c163b0d7 rdf:first sg:person.015205351263.29
    129 rdf:rest N967993170cc7442f914616edf22d13c1
    130 N65fe5f359bd74dbeb97f94027a62de46 rdf:first sg:person.013671173243.88
    131 rdf:rest Na85e58f9ae8841a291c3334d907af30d
    132 N8f23b27d684f41bba3d7d89acf0fcb64 schema:issueNumber 2
    133 rdf:type schema:PublicationIssue
    134 N967993170cc7442f914616edf22d13c1 rdf:first sg:person.012432740125.61
    135 rdf:rest Nd846ca713d1846d7bbef546cfa8965f9
    136 N9fe579b759ca47e1a9b9de034fbe4625 schema:volumeNumber 2021
    137 rdf:type schema:PublicationVolume
    138 Na85e58f9ae8841a291c3334d907af30d rdf:first sg:person.014651311720.05
    139 rdf:rest rdf:nil
    140 Nd82ecc13484e416390f5738c97b3f634 schema:name dimensions_id
    141 schema:value pub.1135167235
    142 rdf:type schema:PropertyValue
    143 Nd846ca713d1846d7bbef546cfa8965f9 rdf:first sg:person.012155553275.80
    144 rdf:rest N65fe5f359bd74dbeb97f94027a62de46
    145 Nfecf1b97641f40deb3c0e1b5d3f9167c schema:name Springer Nature - SN SciGraph project
    146 rdf:type schema:Organization
    147 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Mathematical Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Pure Mathematics
    152 rdf:type schema:DefinedTerm
    153 sg:grant.5493767 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2021)054
    154 rdf:type schema:MonetaryGrant
    155 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2021)054
    156 rdf:type schema:MonetaryGrant
    157 sg:grant.8672070 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2021)054
    158 rdf:type schema:MonetaryGrant
    159 sg:journal.1052482 schema:issn 1029-8479
    160 1126-6708
    161 schema:name Journal of High Energy Physics
    162 schema:publisher Springer Nature
    163 rdf:type schema:Periodical
    164 sg:person.012105771151.34 schema:affiliation grid-institutes:grid.7445.2
    165 schema:familyName Bourget
    166 schema:givenName Antoine
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012105771151.34
    168 rdf:type schema:Person
    169 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    170 schema:familyName Hanany
    171 schema:givenName Amihay
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    173 rdf:type schema:Person
    174 sg:person.012432740125.61 schema:affiliation grid-institutes:grid.7445.2
    175 schema:familyName Grimminger
    176 schema:givenName Julius F.
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012432740125.61
    178 rdf:type schema:Person
    179 sg:person.013671173243.88 schema:affiliation grid-institutes:grid.12527.33
    180 schema:familyName Sperling
    181 schema:givenName Marcus
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
    183 rdf:type schema:Person
    184 sg:person.014651311720.05 schema:affiliation grid-institutes:grid.7445.2
    185 schema:familyName Zhong
    186 schema:givenName Zhenghao
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651311720.05
    188 rdf:type schema:Person
    189 sg:person.015205351263.29 schema:affiliation grid-institutes:grid.4991.5
    190 schema:familyName Giacomelli
    191 schema:givenName Simone
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205351263.29
    193 rdf:type schema:Person
    194 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    195 https://doi.org/10.1007/jhep01(2014)005
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/jhep01(2014)182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036190561
    198 https://doi.org/10.1007/jhep01(2014)182
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/jhep01(2017)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074198899
    201 https://doi.org/10.1007/jhep01(2017)097
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/jhep01(2019)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111314197
    204 https://doi.org/10.1007/jhep01(2019)068
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/jhep01(2020)157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124331365
    207 https://doi.org/10.1007/jhep01(2020)157
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/jhep01(2021)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134422126
    210 https://doi.org/10.1007/jhep01(2021)022
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/jhep01(2021)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134518092
    213 https://doi.org/10.1007/jhep01(2021)054
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/jhep01(2021)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134630975
    216 https://doi.org/10.1007/jhep01(2021)086
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/jhep02(2015)054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076696
    219 https://doi.org/10.1007/jhep02(2015)054
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/jhep02(2018)001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790255
    222 https://doi.org/10.1007/jhep02(2018)001
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/jhep02(2018)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790256
    225 https://doi.org/10.1007/jhep02(2018)002
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/jhep02(2018)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100790257
    228 https://doi.org/10.1007/jhep02(2018)003
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/jhep02(2020)184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125143898
    231 https://doi.org/10.1007/jhep02(2020)184
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/jhep03(2016)024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038390804
    234 https://doi.org/10.1007/jhep03(2016)024
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/jhep03(2016)083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053302058
    237 https://doi.org/10.1007/jhep03(2016)083
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/jhep03(2017)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017822
    240 https://doi.org/10.1007/jhep03(2017)145
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/jhep03(2020)176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126020752
    243 https://doi.org/10.1007/jhep03(2020)176
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    246 https://doi.org/10.1007/jhep04(2017)042
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    249 https://doi.org/10.1007/jhep04(2018)127
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/jhep04(2019)006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113233666
    252 https://doi.org/10.1007/jhep04(2019)006
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/jhep05(2016)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003538586
    255 https://doi.org/10.1007/jhep05(2016)088
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/jhep05(2019)203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116013141
    258 https://doi.org/10.1007/jhep05(2019)203
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/jhep06(2014)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069294
    261 https://doi.org/10.1007/jhep06(2014)059
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/jhep06(2016)044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015642179
    264 https://doi.org/10.1007/jhep06(2016)044
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/jhep07(2016)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798386
    267 https://doi.org/10.1007/jhep07(2016)082
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    270 https://doi.org/10.1007/jhep07(2018)061
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/jhep07(2018)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681214
    273 https://doi.org/10.1007/jhep07(2018)098
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/jhep07(2018)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
    276 https://doi.org/10.1007/jhep07(2018)168
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/jhep07(2019)137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119905953
    279 https://doi.org/10.1007/jhep07(2019)137
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/jhep07(2020)199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129714598
    282 https://doi.org/10.1007/jhep07(2020)199
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/jhep07(2020)204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129747792
    285 https://doi.org/10.1007/jhep07(2020)204
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/jhep08(2015)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004298067
    288 https://doi.org/10.1007/jhep08(2015)097
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/jhep09(2017)067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091817147
    291 https://doi.org/10.1007/jhep09(2017)067
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/jhep09(2017)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092002758
    294 https://doi.org/10.1007/jhep09(2017)144
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/jhep09(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
    297 https://doi.org/10.1007/jhep09(2018)008
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/jhep09(2020)159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131199576
    300 https://doi.org/10.1007/jhep09(2020)159
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/jhep09(2020)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131333828
    303 https://doi.org/10.1007/jhep09(2020)189
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/jhep09(2020)193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131327365
    306 https://doi.org/10.1007/jhep09(2020)193
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/jhep10(2014)134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028849658
    309 https://doi.org/10.1007/jhep10(2014)134
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    312 https://doi.org/10.1007/jhep10(2014)152
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/jhep10(2019)013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1121856617
    315 https://doi.org/10.1007/jhep10(2019)013
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    318 https://doi.org/10.1007/jhep11(2016)175
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1007/jhep11(2018)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759426
    321 https://doi.org/10.1007/jhep11(2018)022
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1007/jhep11(2020)124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132897063
    324 https://doi.org/10.1007/jhep11(2020)124
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    327 https://doi.org/10.1007/jhep12(2014)103
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1007/jhep12(2015)174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081178
    330 https://doi.org/10.1007/jhep12(2015)174
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1007/jhep12(2020)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133402830
    333 https://doi.org/10.1007/jhep12(2020)022
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1007/jhep12(2020)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133541670
    336 https://doi.org/10.1007/jhep12(2020)092
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1007/jhep12(2020)164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134131855
    339 https://doi.org/10.1007/jhep12(2020)164
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1007/s00220-009-0863-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029957613
    342 https://doi.org/10.1007/s00220-009-0863-8
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1007/s11005-018-1087-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103669468
    345 https://doi.org/10.1007/s11005-018-1087-7
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1023/a:1017558904030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016551337
    348 https://doi.org/10.1023/a:1017558904030
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1088/1126-6708/1998/01/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026223761
    351 https://doi.org/10.1088/1126-6708/1998/01/002
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1088/1126-6708/1998/03/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049975593
    354 https://doi.org/10.1088/1126-6708/1998/03/003
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1088/1126-6708/2002/05/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053584273
    357 https://doi.org/10.1088/1126-6708/2002/05/015
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    360 https://doi.org/10.1088/1126-6708/2007/11/050
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1088/1126-6708/2009/06/067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021240849
    363 https://doi.org/10.1088/1126-6708/2009/06/067
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    366 https://doi.org/10.1088/1126-6708/2009/09/052
    367 rdf:type schema:CreativeWork
    368 grid-institutes:grid.12527.33 schema:alternateName Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China
    369 schema:name Yau Mathematical Sciences Center, Tsinghua University, Haidian District, 100084, Beijing, China
    370 rdf:type schema:Organization
    371 grid-institutes:grid.4991.5 schema:alternateName Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K.
    372 schema:name Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG, Oxford, U.K.
    373 rdf:type schema:Organization
    374 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    375 schema:name Theoretical Physics Group, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    376 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...