Minimally unbalanced quivers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-27

AUTHORS

Santiago Cabrera, Amihay Hanany, Anton Zajac

ABSTRACT

We develop a classification of minimally unbalanced 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quiver gauge theories. These gauge theories are important because the isometry group G of their Coulomb branch contains a single factor, which is either a classical or an exceptional Lie group. Concurrently, this provides a classification of hyperkähler cones with isometry group G which are obtainable by Coulomb branch constructions. HyperKähler cones such as Coulomb branches of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quivers are indispensable tools for describing Higgs branches of different theories in various dimensions. In particular, they are used to describe Higgs branches of 5dN=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SQCD with gauge group SU(Nc) and 6dN=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,0\right) $$\end{document} SQCD with gauge group Sp(Nc) at the respective UV fixed points. More... »

PAGES

180

References to SciGraph publications

  • 2018-07-16. The small E8 instanton and the Kraft Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-03-03. Monopole operators in three-dimensional 𝒩 = 4 SYM and mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980. Simple Singularities and Simple Algebraic Groups in NONE
  • 2018-08-29. Resolutions of nilpotent orbit closures via Coulomb branches of 3-dimensional N=4 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aperçu in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-14. Nilpotent orbits and the Coulomb branch of Tσ(G) theories: special orthogonal vs orthogonal gauge group factors in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-26. Discrete gauging in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-11-26. Topological Disorder Operators in Three-Dimensional Conformal Field Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-03. Symplectic singularities in INVENTIONES MATHEMATICAE
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-04-23. Branes and the Kraft-Procesi transition: classical case in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-16. Mirrors of 3d Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-09-03. Quiver subtractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-21. Quiver theories and formulae for nilpotent orbits of Exceptional algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-02. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-24. Discrete gauging in Coulomb branches of three dimensional N=4 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-27. Highest weight generating functions for Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-04-23. On mirror symmetry in three dimensional Abelian gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2019)180

    DOI

    http://dx.doi.org/10.1007/jhep02(2019)180

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112465433


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cabrera", 
            "givenName": "Santiago", 
            "id": "sg:person.015574474365.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zajac", 
            "givenName": "Anton", 
            "id": "sg:person.011255054764.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255054764.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep08(2018)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106409188", 
              "https://doi.org/10.1007/jhep08(2018)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105681214", 
              "https://doi.org/10.1007/jhep07(2018)098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092691109", 
              "https://doi.org/10.1007/jhep11(2017)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009424522", 
              "https://doi.org/10.1007/jhep09(2010)063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/04/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001667186", 
              "https://doi.org/10.1088/1126-6708/1999/04/021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/03/008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010577780", 
              "https://doi.org/10.1088/1126-6708/2004/03/008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041675977", 
              "https://doi.org/10.1007/jhep08(2016)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2018)127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103637912", 
              "https://doi.org/10.1007/jhep04(2018)127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0090294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020531009", 
              "https://doi.org/10.1007/bfb0090294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228754", 
              "https://doi.org/10.1088/1126-6708/2002/11/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2018)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106581267", 
              "https://doi.org/10.1007/jhep09(2018)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106339497", 
              "https://doi.org/10.1007/jhep08(2018)158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002229900043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041729477", 
              "https://doi.org/10.1007/s002229900043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092891163", 
              "https://doi.org/10.1007/jhep11(2017)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105875050", 
              "https://doi.org/10.1007/jhep07(2018)168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011840461", 
              "https://doi.org/10.1007/jhep10(2014)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-27", 
        "datePublishedReg": "2019-02-27", 
        "description": "We develop a classification of minimally unbalanced 3dN=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} quiver gauge theories. These gauge theories are important because the isometry group G of their Coulomb branch contains a single factor, which is either a classical or an exceptional Lie group. Concurrently, this provides a classification of hyperk\u00e4hler cones with isometry group G which are obtainable by Coulomb branch constructions. HyperK\u00e4hler cones such as Coulomb branches of 3dN=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} quivers are indispensable tools for describing Higgs branches of different theories in various dimensions. In particular, they are used to describe Higgs branches of 5dN=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=1 $$\\end{document} SQCD with gauge group SU(Nc) and 6dN=10\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=\\left(1,0\\right) $$\\end{document} SQCD with gauge group Sp(Nc) at the respective UV fixed points.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2019)180", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "isometry group G", 
          "Coulomb branch", 
          "Higgs branch", 
          "group G", 
          "exceptional Lie groups", 
          "hyperk\u00e4hler cones", 
          "gauge group", 
          "Lie groups", 
          "gauge theory", 
          "quivers", 
          "theory", 
          "SQCD", 
          "branch constructions", 
          "indispensable tool", 
          "different theories", 
          "branches", 
          "cone", 
          "dimensions", 
          "point", 
          "construction", 
          "classification", 
          "tool", 
          "UV", 
          "single factor", 
          "group", 
          "factors", 
          "respective UV"
        ], 
        "name": "Minimally unbalanced quivers", 
        "pagination": "180", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112465433"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2019)180"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2019)180", 
          "https://app.dimensions.ai/details/publication/pub.1112465433"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_795.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2019)180"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)180'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)180'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)180'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)180'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      21 PREDICATES      81 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2019)180 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 anzsrc-for:0206
    6 schema:author Na11f20c1732545de975d45f22914cbbb
    7 schema:citation sg:pub.10.1007/bf02565876
    8 sg:pub.10.1007/bfb0090294
    9 sg:pub.10.1007/jhep01(2014)005
    10 sg:pub.10.1007/jhep01(2015)150
    11 sg:pub.10.1007/jhep04(2017)042
    12 sg:pub.10.1007/jhep04(2018)127
    13 sg:pub.10.1007/jhep06(2016)130
    14 sg:pub.10.1007/jhep07(2018)061
    15 sg:pub.10.1007/jhep07(2018)098
    16 sg:pub.10.1007/jhep07(2018)168
    17 sg:pub.10.1007/jhep08(2016)016
    18 sg:pub.10.1007/jhep08(2018)158
    19 sg:pub.10.1007/jhep08(2018)189
    20 sg:pub.10.1007/jhep09(2010)063
    21 sg:pub.10.1007/jhep09(2018)008
    22 sg:pub.10.1007/jhep10(2014)152
    23 sg:pub.10.1007/jhep11(2016)175
    24 sg:pub.10.1007/jhep11(2017)079
    25 sg:pub.10.1007/jhep11(2017)126
    26 sg:pub.10.1007/jhep12(2014)103
    27 sg:pub.10.1007/s002229900043
    28 sg:pub.10.1088/1126-6708/1999/04/021
    29 sg:pub.10.1088/1126-6708/2002/11/049
    30 sg:pub.10.1088/1126-6708/2002/12/044
    31 sg:pub.10.1088/1126-6708/2004/03/008
    32 sg:pub.10.1088/1126-6708/2007/03/090
    33 sg:pub.10.1088/1126-6708/2008/05/099
    34 schema:datePublished 2019-02-27
    35 schema:datePublishedReg 2019-02-27
    36 schema:description We develop a classification of minimally unbalanced 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quiver gauge theories. These gauge theories are important because the isometry group G of their Coulomb branch contains a single factor, which is either a classical or an exceptional Lie group. Concurrently, this provides a classification of hyperkähler cones with isometry group G which are obtainable by Coulomb branch constructions. HyperKähler cones such as Coulomb branches of 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} quivers are indispensable tools for describing Higgs branches of different theories in various dimensions. In particular, they are used to describe Higgs branches of 5dN=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} SQCD with gauge group SU(Nc) and 6dN=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(1,0\right) $$\end{document} SQCD with gauge group Sp(Nc) at the respective UV fixed points.
    37 schema:genre article
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N16b5cfb69d8e4bccaa81fe4a3a2ee30d
    40 N93d1084d289f455a86b28adc1108bfc1
    41 sg:journal.1052482
    42 schema:keywords Coulomb branch
    43 Higgs branch
    44 Lie groups
    45 SQCD
    46 UV
    47 branch constructions
    48 branches
    49 classification
    50 cone
    51 construction
    52 different theories
    53 dimensions
    54 exceptional Lie groups
    55 factors
    56 gauge group
    57 gauge theory
    58 group
    59 group G
    60 hyperkähler cones
    61 indispensable tool
    62 isometry group G
    63 point
    64 quivers
    65 respective UV
    66 single factor
    67 theory
    68 tool
    69 schema:name Minimally unbalanced quivers
    70 schema:pagination 180
    71 schema:productId N1c3a1ffb6a194c8dab48a8b6c77bb7cd
    72 N280855841e1b451cb9e56b481d17a75d
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112465433
    74 https://doi.org/10.1007/jhep02(2019)180
    75 schema:sdDatePublished 2022-10-01T06:45
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N674ee15a76d245529b1f30dc80c3c1fb
    78 schema:url https://doi.org/10.1007/jhep02(2019)180
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N16b5cfb69d8e4bccaa81fe4a3a2ee30d schema:volumeNumber 2019
    83 rdf:type schema:PublicationVolume
    84 N1c3a1ffb6a194c8dab48a8b6c77bb7cd schema:name doi
    85 schema:value 10.1007/jhep02(2019)180
    86 rdf:type schema:PropertyValue
    87 N280855841e1b451cb9e56b481d17a75d schema:name dimensions_id
    88 schema:value pub.1112465433
    89 rdf:type schema:PropertyValue
    90 N674ee15a76d245529b1f30dc80c3c1fb schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N6bb270992a4c4f5ca65adbd16c4e8121 rdf:first sg:person.011255054764.23
    93 rdf:rest rdf:nil
    94 N93d1084d289f455a86b28adc1108bfc1 schema:issueNumber 2
    95 rdf:type schema:PublicationIssue
    96 Na11f20c1732545de975d45f22914cbbb rdf:first sg:person.015574474365.83
    97 rdf:rest Ne9d1af2378d34622a87d1ed29dded1a9
    98 Ne9d1af2378d34622a87d1ed29dded1a9 rdf:first sg:person.012155553275.80
    99 rdf:rest N6bb270992a4c4f5ca65adbd16c4e8121
    100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Mathematical Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Mathematical Physics
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Physical Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Quantum Physics
    114 rdf:type schema:DefinedTerm
    115 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2019)180
    116 rdf:type schema:MonetaryGrant
    117 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2019)180
    118 rdf:type schema:MonetaryGrant
    119 sg:journal.1052482 schema:issn 1029-8479
    120 1126-6708
    121 schema:name Journal of High Energy Physics
    122 schema:publisher Springer Nature
    123 rdf:type schema:Periodical
    124 sg:person.011255054764.23 schema:affiliation grid-institutes:grid.7445.2
    125 schema:familyName Zajac
    126 schema:givenName Anton
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255054764.23
    128 rdf:type schema:Person
    129 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    130 schema:familyName Hanany
    131 schema:givenName Amihay
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    133 rdf:type schema:Person
    134 sg:person.015574474365.83 schema:affiliation grid-institutes:grid.7445.2
    135 schema:familyName Cabrera
    136 schema:givenName Santiago
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574474365.83
    138 rdf:type schema:Person
    139 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    140 https://doi.org/10.1007/bf02565876
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bfb0090294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531009
    143 https://doi.org/10.1007/bfb0090294
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    146 https://doi.org/10.1007/jhep01(2014)005
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    149 https://doi.org/10.1007/jhep01(2015)150
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    152 https://doi.org/10.1007/jhep04(2017)042
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep04(2018)127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103637912
    155 https://doi.org/10.1007/jhep04(2018)127
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    158 https://doi.org/10.1007/jhep06(2016)130
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    161 https://doi.org/10.1007/jhep07(2018)061
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep07(2018)098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105681214
    164 https://doi.org/10.1007/jhep07(2018)098
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep07(2018)168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105875050
    167 https://doi.org/10.1007/jhep07(2018)168
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep08(2016)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
    170 https://doi.org/10.1007/jhep08(2016)016
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep08(2018)158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106339497
    173 https://doi.org/10.1007/jhep08(2018)158
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep08(2018)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106409188
    176 https://doi.org/10.1007/jhep08(2018)189
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep09(2010)063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009424522
    179 https://doi.org/10.1007/jhep09(2010)063
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep09(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
    182 https://doi.org/10.1007/jhep09(2018)008
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep10(2014)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011840461
    185 https://doi.org/10.1007/jhep10(2014)152
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    188 https://doi.org/10.1007/jhep11(2016)175
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep11(2017)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092691109
    191 https://doi.org/10.1007/jhep11(2017)079
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep11(2017)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    194 https://doi.org/10.1007/jhep11(2017)126
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    197 https://doi.org/10.1007/jhep12(2014)103
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s002229900043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041729477
    200 https://doi.org/10.1007/s002229900043
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1088/1126-6708/1999/04/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667186
    203 https://doi.org/10.1088/1126-6708/1999/04/021
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
    206 https://doi.org/10.1088/1126-6708/2002/11/049
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    209 https://doi.org/10.1088/1126-6708/2002/12/044
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1088/1126-6708/2004/03/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010577780
    212 https://doi.org/10.1088/1126-6708/2004/03/008
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    215 https://doi.org/10.1088/1126-6708/2007/03/090
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    218 https://doi.org/10.1088/1126-6708/2008/05/099
    219 rdf:type schema:CreativeWork
    220 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom
    221 schema:name Theoretical Physics, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2AZ, London, United Kingdom
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...