Nilpotent orbit Coulomb branches of types AD View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-19

AUTHORS

Amihay Hanany, Dominik Miketa

ABSTRACT

We develop a new method for constructing 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} Coulomb branch chiral rings in terms of gauge-invariant generators and relations while making the global symmetry manifest. Our examples generalise to all balanced quivers of type A and D whose Coulomb branches are closures of nilpotent orbits. This new approach is a synthesis of operator counting using Hilbert series and explicit algebraic construction introduced by Bullimore, Dimofte and Gaiotto with significant potential for further generalisation to other quivers, including non-simply laced. The method also identifies complex mass deformations of many Coulomb branches, providing an explicit construction for complex deformations of nilpotent orbits. More... »

PAGES

113

References to SciGraph publications

  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-07-09. 3d Coulomb branch and 5d Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-09-03. Quiver subtractions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-21. Quiver theories and formulae for nilpotent orbits of Exceptional algebras in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-24. Discrete gauging in Coulomb branches of three dimensional N=4 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-08-29. Resolutions of nilpotent orbit closures via Coulomb branches of 3-dimensional N=4 theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-03-20. Counting gauge invariants: the plethystic program in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-06-03. The Coulomb Branch of 3d N=4 Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2017-02-06. Algebraic properties of the monopole formula in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-03-29. Ring relations and mirror map from branes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-04-10. Instanton operators and the Higgs branch at infinite coupling in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-11-26. Topological Disorder Operators in Three-Dimensional Conformal Field Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2019)113

    DOI

    http://dx.doi.org/10.1007/jhep02(2019)113

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112361255


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miketa", 
            "givenName": "Dominik", 
            "id": "sg:person.011625324603.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011625324603.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep03(2017)152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084017829", 
              "https://doi.org/10.1007/jhep03(2017)152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2018)008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106581267", 
              "https://doi.org/10.1007/jhep09(2018)008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2018)061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105466090", 
              "https://doi.org/10.1007/jhep07(2018)061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092891163", 
              "https://doi.org/10.1007/jhep11(2017)126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/03/090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040656476", 
              "https://doi.org/10.1088/1126-6708/2007/03/090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106409188", 
              "https://doi.org/10.1007/jhep08(2018)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-017-2903-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085755009", 
              "https://doi.org/10.1007/s00220-017-2903-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228754", 
              "https://doi.org/10.1088/1126-6708/2002/11/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2017)042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084753038", 
              "https://doi.org/10.1007/jhep04(2017)042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2018)158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106339497", 
              "https://doi.org/10.1007/jhep08(2018)158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2017)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083698145", 
              "https://doi.org/10.1007/jhep02(2017)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-19", 
        "datePublishedReg": "2019-02-19", 
        "description": "We develop a new method for constructing 3dN=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} Coulomb branch chiral rings in terms of gauge-invariant generators and relations while making the global symmetry manifest. Our examples generalise to all balanced quivers of type A and D whose Coulomb branches are closures of nilpotent orbits. This new approach is a synthesis of operator counting using Hilbert series and explicit algebraic construction introduced by Bullimore, Dimofte and Gaiotto with significant potential for further generalisation to other quivers, including non-simply laced. The method also identifies complex mass deformations of many Coulomb branches, providing an explicit construction for complex deformations of nilpotent orbits.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2019)113", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6503113", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "Coulomb branch", 
          "nilpotent orbits", 
          "explicit algebraic construction", 
          "Coulomb branch chiral rings", 
          "operator counting", 
          "algebraic construction", 
          "chiral ring", 
          "Hilbert series", 
          "explicit construction", 
          "further generalisation", 
          "quivers", 
          "orbit", 
          "mass deformation", 
          "Gaiotto", 
          "new method", 
          "new approach", 
          "complex deformation", 
          "generalisation", 
          "branches", 
          "construction", 
          "generator", 
          "terms", 
          "deformation", 
          "approach", 
          "Non", 
          "type AD", 
          "relation", 
          "counting", 
          "ring", 
          "series", 
          "significant potential", 
          "potential", 
          "AD", 
          "type A", 
          "closure", 
          "manifest", 
          "synthesis", 
          "method", 
          "example"
        ], 
        "name": "Nilpotent orbit Coulomb branches of types AD", 
        "pagination": "113", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112361255"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2019)113"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2019)113", 
          "https://app.dimensions.ai/details/publication/pub.1112361255"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_813.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2019)113"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)113'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)113'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)113'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)113'


     

    This table displays all metadata directly associated to this object as RDF triples.

    173 TRIPLES      21 PREDICATES      79 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2019)113 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N5eaa54482bda484cbda2703c5d351204
    4 schema:citation sg:pub.10.1007/jhep01(2014)005
    5 sg:pub.10.1007/jhep02(2017)023
    6 sg:pub.10.1007/jhep03(2017)152
    7 sg:pub.10.1007/jhep04(2017)042
    8 sg:pub.10.1007/jhep06(2016)130
    9 sg:pub.10.1007/jhep07(2018)061
    10 sg:pub.10.1007/jhep08(2018)158
    11 sg:pub.10.1007/jhep08(2018)189
    12 sg:pub.10.1007/jhep09(2018)008
    13 sg:pub.10.1007/jhep11(2017)126
    14 sg:pub.10.1007/jhep12(2014)103
    15 sg:pub.10.1007/s00220-017-2903-0
    16 sg:pub.10.1088/1126-6708/2002/11/049
    17 sg:pub.10.1088/1126-6708/2002/12/044
    18 sg:pub.10.1088/1126-6708/2007/03/090
    19 sg:pub.10.1088/1126-6708/2007/11/050
    20 schema:datePublished 2019-02-19
    21 schema:datePublishedReg 2019-02-19
    22 schema:description We develop a new method for constructing 3dN=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} Coulomb branch chiral rings in terms of gauge-invariant generators and relations while making the global symmetry manifest. Our examples generalise to all balanced quivers of type A and D whose Coulomb branches are closures of nilpotent orbits. This new approach is a synthesis of operator counting using Hilbert series and explicit algebraic construction introduced by Bullimore, Dimofte and Gaiotto with significant potential for further generalisation to other quivers, including non-simply laced. The method also identifies complex mass deformations of many Coulomb branches, providing an explicit construction for complex deformations of nilpotent orbits.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N62f3b0b20f6e40d99c3ba6160ea470e8
    26 N9184933f220446759227c0613c6b4907
    27 sg:journal.1052482
    28 schema:keywords AD
    29 Coulomb branch
    30 Coulomb branch chiral rings
    31 Gaiotto
    32 Hilbert series
    33 Non
    34 algebraic construction
    35 approach
    36 branches
    37 chiral ring
    38 closure
    39 complex deformation
    40 construction
    41 counting
    42 deformation
    43 example
    44 explicit algebraic construction
    45 explicit construction
    46 further generalisation
    47 generalisation
    48 generator
    49 manifest
    50 mass deformation
    51 method
    52 new approach
    53 new method
    54 nilpotent orbits
    55 operator counting
    56 orbit
    57 potential
    58 quivers
    59 relation
    60 ring
    61 series
    62 significant potential
    63 synthesis
    64 terms
    65 type A
    66 type AD
    67 schema:name Nilpotent orbit Coulomb branches of types AD
    68 schema:pagination 113
    69 schema:productId N959b6ec94e254b9a9d6e1e0625dd475b
    70 Ne82db378efcd4b31b92fa206ebc20e70
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112361255
    72 https://doi.org/10.1007/jhep02(2019)113
    73 schema:sdDatePublished 2022-09-02T16:04
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher Nd723d852f285425b9c04d18ed00abebc
    76 schema:url https://doi.org/10.1007/jhep02(2019)113
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N1ba3b36337844cec90855771a25cbf15 rdf:first sg:person.011625324603.21
    81 rdf:rest rdf:nil
    82 N5eaa54482bda484cbda2703c5d351204 rdf:first sg:person.012155553275.80
    83 rdf:rest N1ba3b36337844cec90855771a25cbf15
    84 N62f3b0b20f6e40d99c3ba6160ea470e8 schema:volumeNumber 2019
    85 rdf:type schema:PublicationVolume
    86 N9184933f220446759227c0613c6b4907 schema:issueNumber 2
    87 rdf:type schema:PublicationIssue
    88 N959b6ec94e254b9a9d6e1e0625dd475b schema:name dimensions_id
    89 schema:value pub.1112361255
    90 rdf:type schema:PropertyValue
    91 Nd723d852f285425b9c04d18ed00abebc schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 Ne82db378efcd4b31b92fa206ebc20e70 schema:name doi
    94 schema:value 10.1007/jhep02(2019)113
    95 rdf:type schema:PropertyValue
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Pure Mathematics
    101 rdf:type schema:DefinedTerm
    102 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2019)113
    103 rdf:type schema:MonetaryGrant
    104 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2019)113
    105 rdf:type schema:MonetaryGrant
    106 sg:grant.6503113 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2019)113
    107 rdf:type schema:MonetaryGrant
    108 sg:journal.1052482 schema:issn 1029-8479
    109 1126-6708
    110 schema:name Journal of High Energy Physics
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.011625324603.21 schema:affiliation grid-institutes:grid.7445.2
    114 schema:familyName Miketa
    115 schema:givenName Dominik
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011625324603.21
    117 rdf:type schema:Person
    118 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    119 schema:familyName Hanany
    120 schema:givenName Amihay
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    122 rdf:type schema:Person
    123 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    124 https://doi.org/10.1007/jhep01(2014)005
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/jhep02(2017)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
    127 https://doi.org/10.1007/jhep02(2017)023
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep03(2017)152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017829
    130 https://doi.org/10.1007/jhep03(2017)152
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep04(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084753038
    133 https://doi.org/10.1007/jhep04(2017)042
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    136 https://doi.org/10.1007/jhep06(2016)130
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep07(2018)061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105466090
    139 https://doi.org/10.1007/jhep07(2018)061
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep08(2018)158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106339497
    142 https://doi.org/10.1007/jhep08(2018)158
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep08(2018)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106409188
    145 https://doi.org/10.1007/jhep08(2018)189
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep09(2018)008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106581267
    148 https://doi.org/10.1007/jhep09(2018)008
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep11(2017)126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092891163
    151 https://doi.org/10.1007/jhep11(2017)126
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    154 https://doi.org/10.1007/jhep12(2014)103
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00220-017-2903-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085755009
    157 https://doi.org/10.1007/s00220-017-2903-0
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
    160 https://doi.org/10.1088/1126-6708/2002/11/049
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    163 https://doi.org/10.1088/1126-6708/2002/12/044
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1088/1126-6708/2007/03/090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040656476
    166 https://doi.org/10.1088/1126-6708/2007/03/090
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    169 https://doi.org/10.1088/1126-6708/2007/11/050
    170 rdf:type schema:CreativeWork
    171 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, U.K.
    172 schema:name Theoretical Physics, The Blackett Laboratory, Imperial College London, SW7 2AZ, London, U.K.
    173 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...