Eigenvalue equation for genus two modular graphs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-07

AUTHORS

Anirban Basu

ABSTRACT

We obtain a second order differential equation on moduli space satisfied by certain modular graph functions at genus two, each of which has two links. This eigenvalue equation is obtained by analyzing the variations of these graphs under the variation of the Beltrami differentials. This equation involves seven distinct graphs, three of which appear in the integrand of the D8ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}4 term in the low momentum expansion of the four graviton amplitude at genus two in type II string theory. More... »

PAGES

46

References to SciGraph publications

  • 2008-02-08. Low energy expansion of the four-particle genus-one amplitude in type II superstring theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11-22. Low momentum expansion of one loop amplitudes in heterotic string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-18. From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop in JOURNAL OF HIGH ENERGY PHYSICS
  • 2019-01-07. Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-16. Infrared divergences and harmonic anomalies in the two-loop superstring effective action in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-07-09. Gross–Schoen cycles and dualising sheaves in INVENTIONES MATHEMATICAE
  • 2006-01-04. Super-Poincaré covariant two-loop superstring amplitudes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-09-28. Tetrahedral modular graph functions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-09. Matching the D6ℛ4 interaction at two-loops in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-09. Hierarchy of modular graph identities in JOURNAL OF HIGH ENERGY PHYSICS
  • 1991-04. The asymptotics of the Arakelov-Geen's function and Faltings' delta invariant in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-08-11. On the modular structure of the genus-one Type II superstring low energy expansion in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-29. Multiparticle one-loop amplitudes and S-duality in closed superstring theory in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2019)046

    DOI

    http://dx.doi.org/10.1007/jhep02(2019)046

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111982424


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhusi, 211019, Prayagraj, India", 
              "id": "http://www.grid.ac/institutes/grid.450311.2", 
              "name": [
                "Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhusi, 211019, Prayagraj, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Basu", 
            "givenName": "Anirban", 
            "id": "sg:person.013127203161.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127203161.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep10(2013)188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004506000", 
              "https://doi.org/10.1007/jhep10(2013)188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02100272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018299259", 
              "https://doi.org/10.1007/bf02100272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048054699", 
              "https://doi.org/10.1007/jhep12(2015)102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111579933", 
              "https://doi.org/10.1007/jhep01(2019)155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2006/01/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002826036", 
              "https://doi.org/10.1088/1126-6708/2006/01/005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092893542", 
              "https://doi.org/10.1007/jhep11(2017)139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2015)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011659006", 
              "https://doi.org/10.1007/jhep08(2015)041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029581429", 
              "https://doi.org/10.1007/jhep01(2015)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049847218", 
              "https://doi.org/10.1007/jhep11(2016)051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2017)155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092001816", 
              "https://doi.org/10.1007/jhep09(2017)155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/02/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036232522", 
              "https://doi.org/10.1088/1126-6708/2008/02/020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-009-0209-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033067883", 
              "https://doi.org/10.1007/s00222-009-0209-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2019)052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111367011", 
              "https://doi.org/10.1007/jhep01(2019)052"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-07", 
        "datePublishedReg": "2019-02-07", 
        "description": "We obtain a second order differential equation on moduli space satisfied by certain modular graph functions at genus two, each of which has two links. This eigenvalue equation is obtained by analyzing the variations of these graphs under the variation of the Beltrami differentials. This equation involves seven distinct graphs, three of which appear in the integrand of the D8\u211b\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathrm{\\mathcal{R}} $$\\end{document}4 term in the low momentum expansion of the four graviton amplitude at genus two in type II string theory.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2019)046", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2019"
          }
        ], 
        "keywords": [
          "second order differential equations", 
          "type II string theory", 
          "genus two", 
          "order differential equations", 
          "eigenvalue equation", 
          "low momentum expansion", 
          "modular graph functions", 
          "differential equations", 
          "string theory", 
          "Beltrami differentials", 
          "moduli space", 
          "modular graphs", 
          "equations", 
          "graviton amplitudes", 
          "momentum expansion", 
          "distinct graphs", 
          "graph", 
          "integrand", 
          "space", 
          "graph functions", 
          "theory", 
          "two", 
          "differential", 
          "terms", 
          "function", 
          "expansion", 
          "link", 
          "amplitude", 
          "variation", 
          "certain modular graph functions", 
          "II string theory", 
          "genus two modular graphs", 
          "two modular graphs"
        ], 
        "name": "Eigenvalue equation for genus two modular graphs", 
        "pagination": "46", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111982424"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2019)046"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2019)046", 
          "https://app.dimensions.ai/details/publication/pub.1111982424"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_811.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2019)046"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)046'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)046'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)046'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2019)046'


     

    This table displays all metadata directly associated to this object as RDF triples.

    143 TRIPLES      22 PREDICATES      71 URIs      50 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2019)046 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1b14265ad29849e69ced07163aa46e4e
    4 schema:citation sg:pub.10.1007/bf02100272
    5 sg:pub.10.1007/jhep01(2015)031
    6 sg:pub.10.1007/jhep01(2019)052
    7 sg:pub.10.1007/jhep01(2019)155
    8 sg:pub.10.1007/jhep08(2015)041
    9 sg:pub.10.1007/jhep09(2017)155
    10 sg:pub.10.1007/jhep10(2013)188
    11 sg:pub.10.1007/jhep11(2016)051
    12 sg:pub.10.1007/jhep11(2017)139
    13 sg:pub.10.1007/jhep12(2015)102
    14 sg:pub.10.1007/s00222-009-0209-3
    15 sg:pub.10.1088/1126-6708/2006/01/005
    16 sg:pub.10.1088/1126-6708/2008/02/020
    17 schema:datePublished 2019-02-07
    18 schema:datePublishedReg 2019-02-07
    19 schema:description We obtain a second order differential equation on moduli space satisfied by certain modular graph functions at genus two, each of which has two links. This eigenvalue equation is obtained by analyzing the variations of these graphs under the variation of the Beltrami differentials. This equation involves seven distinct graphs, three of which appear in the integrand of the D8ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}4 term in the low momentum expansion of the four graviton amplitude at genus two in type II string theory.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N4ae4ced6430b47f0be8f501c6da30254
    24 Nbe1d3cc0121c46d9b8cc7e1ac073ebba
    25 sg:journal.1052482
    26 schema:keywords Beltrami differentials
    27 II string theory
    28 amplitude
    29 certain modular graph functions
    30 differential
    31 differential equations
    32 distinct graphs
    33 eigenvalue equation
    34 equations
    35 expansion
    36 function
    37 genus two
    38 genus two modular graphs
    39 graph
    40 graph functions
    41 graviton amplitudes
    42 integrand
    43 link
    44 low momentum expansion
    45 modular graph functions
    46 modular graphs
    47 moduli space
    48 momentum expansion
    49 order differential equations
    50 second order differential equations
    51 space
    52 string theory
    53 terms
    54 theory
    55 two
    56 two modular graphs
    57 type II string theory
    58 variation
    59 schema:name Eigenvalue equation for genus two modular graphs
    60 schema:pagination 46
    61 schema:productId Nbce7dc474e034dc59981f9ea5e6fa445
    62 Ne4053bf967094153a541fe6f57e22ef2
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111982424
    64 https://doi.org/10.1007/jhep02(2019)046
    65 schema:sdDatePublished 2021-11-01T18:35
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher Naf50bad65e8c421d8486fac794b7a444
    68 schema:url https://doi.org/10.1007/jhep02(2019)046
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N1b14265ad29849e69ced07163aa46e4e rdf:first sg:person.013127203161.95
    73 rdf:rest rdf:nil
    74 N4ae4ced6430b47f0be8f501c6da30254 schema:volumeNumber 2019
    75 rdf:type schema:PublicationVolume
    76 Naf50bad65e8c421d8486fac794b7a444 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Nbce7dc474e034dc59981f9ea5e6fa445 schema:name doi
    79 schema:value 10.1007/jhep02(2019)046
    80 rdf:type schema:PropertyValue
    81 Nbe1d3cc0121c46d9b8cc7e1ac073ebba schema:issueNumber 2
    82 rdf:type schema:PublicationIssue
    83 Ne4053bf967094153a541fe6f57e22ef2 schema:name dimensions_id
    84 schema:value pub.1111982424
    85 rdf:type schema:PropertyValue
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Pure Mathematics
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1052482 schema:issn 1029-8479
    93 1126-6708
    94 schema:name Journal of High Energy Physics
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.013127203161.95 schema:affiliation grid-institutes:grid.450311.2
    98 schema:familyName Basu
    99 schema:givenName Anirban
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013127203161.95
    101 rdf:type schema:Person
    102 sg:pub.10.1007/bf02100272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018299259
    103 https://doi.org/10.1007/bf02100272
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/jhep01(2015)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029581429
    106 https://doi.org/10.1007/jhep01(2015)031
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/jhep01(2019)052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111367011
    109 https://doi.org/10.1007/jhep01(2019)052
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/jhep01(2019)155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111579933
    112 https://doi.org/10.1007/jhep01(2019)155
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep08(2015)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011659006
    115 https://doi.org/10.1007/jhep08(2015)041
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep09(2017)155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092001816
    118 https://doi.org/10.1007/jhep09(2017)155
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/jhep10(2013)188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004506000
    121 https://doi.org/10.1007/jhep10(2013)188
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/jhep11(2016)051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049847218
    124 https://doi.org/10.1007/jhep11(2016)051
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/jhep11(2017)139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092893542
    127 https://doi.org/10.1007/jhep11(2017)139
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep12(2015)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048054699
    130 https://doi.org/10.1007/jhep12(2015)102
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s00222-009-0209-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033067883
    133 https://doi.org/10.1007/s00222-009-0209-3
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1088/1126-6708/2006/01/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002826036
    136 https://doi.org/10.1088/1126-6708/2006/01/005
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1088/1126-6708/2008/02/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036232522
    139 https://doi.org/10.1088/1126-6708/2008/02/020
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.450311.2 schema:alternateName Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhusi, 211019, Prayagraj, India
    142 schema:name Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhusi, 211019, Prayagraj, India
    143 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...