Holographic non-computers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-02

AUTHORS

José L. F. Barbón, Javier Martín-García

ABSTRACT

We introduce the notion of holographic non-computer as a system which exhibits parametrically large delays in the growth of complexity, as calculated within the Complexity-Action proposal. Some known examples of this behavior include extremal black holes and near-extremal hyperbolic black holes. Generic black holes in higher-dimensional gravity also show non-computing features. Within the 1/d expansion of General Relativity, we show that large-d scalings which capture the qualitative features of complexity, such as a linear growth regime and a plateau at exponentially long times, also exhibit an initial computational delay proportional to d. While consistent for large AdS black holes, the required ‘non-computing’ scalings are incompatible with thermodynamic stability for Schwarzschild black holes, unless they are tightly caged. More... »

PAGES

181

References to SciGraph publications

  • 2013-06. The large D limit of General Relativity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-02. Black holes: complementarity or firewalls? in JOURNAL OF HIGH ENERGY PHYSICS
  • 2018-02. Comparison of holographic and field theoretic complexities for time dependent thermofield double states in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01. Complexity of formation in holography in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-09. Action growth for AdS black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08. Spontaneous fragmentation of topological black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-11. Holographic complexity of cold hyperbolic black holes in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-06-30. AdS/CFT duals of topological black holes and the entropy of zero-energy states in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-04. A membrane paradigm at large D in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-02-06. The black hole singularity in AdS/CFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-11. On the time dependence of holographic complexity in JOURNAL OF HIGH ENERGY PHYSICS
  • 1983-12. Thermodynamics of black holes in anti-de Sitter space in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2018)181

    DOI

    http://dx.doi.org/10.1007/jhep02(2018)181

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101293605


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Instituto de F\u00edsica Te\u00f3rica IFT UAM/CSIC, Calle Nicol\u00e1s Cabrera 13. UAM, Cantoblanco., 28049, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barb\u00f3n", 
            "givenName": "Jos\u00e9 L. F.", 
            "id": "sg:person.011034373745.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034373745.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Instituto de F\u00edsica Te\u00f3rica IFT UAM/CSIC, Calle Nicol\u00e1s Cabrera 13. UAM, Cantoblanco., 28049, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mart\u00edn-Garc\u00eda", 
            "givenName": "Javier", 
            "id": "sg:person.016610763624.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610763624.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/prop.201500093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002366392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01208266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003905617", 
              "https://doi.org/10.1007/bf01208266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01208266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003905617", 
              "https://doi.org/10.1007/bf01208266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep04(2016)076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004579755", 
              "https://doi.org/10.1007/jhep04(2016)076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/28/10/105016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005309038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.126007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008368776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.90.126007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008368776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prop.201500091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014177475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017776242", 
              "https://doi.org/10.1007/jhep08(2010)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020631790", 
              "https://doi.org/10.1007/jhep11(2015)181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/prop.201500095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021945615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023406972", 
              "https://doi.org/10.1007/jhep02(2013)062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032852852", 
              "https://doi.org/10.1007/jhep06(2013)009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/06/036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033761809", 
              "https://doi.org/10.1088/1126-6708/1999/06/036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2016)161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037732402", 
              "https://doi.org/10.1007/jhep09(2016)161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2016)161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037732402", 
              "https://doi.org/10.1007/jhep09(2016)161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/02/014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039776934", 
              "https://doi.org/10.1088/1126-6708/2004/02/014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051310133", 
              "https://doi.org/10.1007/jhep01(2017)062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2017)062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051310133", 
              "https://doi.org/10.1007/jhep01(2017)062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.1407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.1407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.086006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.086006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060712595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.084046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.94.084046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060714253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.191301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.116.191301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060765530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.36.985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060780501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.36.985", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060780501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.1336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.61.1336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060797577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2017)188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093061184", 
              "https://doi.org/10.1007/jhep11(2017)188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2018)082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101056499", 
              "https://doi.org/10.1007/jhep02(2018)082"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-02", 
        "datePublishedReg": "2018-02-01", 
        "description": "We introduce the notion of holographic non-computer as a system which exhibits parametrically large delays in the growth of complexity, as calculated within the Complexity-Action proposal. Some known examples of this behavior include extremal black holes and near-extremal hyperbolic black holes. Generic black holes in higher-dimensional gravity also show non-computing features. Within the 1/d expansion of General Relativity, we show that large-d scalings which capture the qualitative features of complexity, such as a linear growth regime and a plateau at exponentially long times, also exhibit an initial computational delay proportional to d. While consistent for large AdS black holes, the required \u2018non-computing\u2019 scalings are incompatible with thermodynamic stability for Schwarzschild black holes, unless they are tightly caged.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/jhep02(2018)181", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2018"
          }
        ], 
        "name": "Holographic non-computers", 
        "pagination": "181", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b0c0c0d08d3ca8a32b262b72da963cd4a1527f11c72e299b41b2b12aacd4b661"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2018)181"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101293605"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2018)181", 
          "https://app.dimensions.ai/details/publication/pub.1101293605"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2FJHEP02%282018%29181"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2018)181'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2018)181'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2018)181'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2018)181'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2018)181 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author Nd02e3c39eb6241dfaf7861825afa3979
    4 schema:citation sg:pub.10.1007/bf01208266
    5 sg:pub.10.1007/jhep01(2017)062
    6 sg:pub.10.1007/jhep02(2013)062
    7 sg:pub.10.1007/jhep02(2018)082
    8 sg:pub.10.1007/jhep04(2016)076
    9 sg:pub.10.1007/jhep06(2013)009
    10 sg:pub.10.1007/jhep08(2010)031
    11 sg:pub.10.1007/jhep09(2016)161
    12 sg:pub.10.1007/jhep11(2015)181
    13 sg:pub.10.1007/jhep11(2017)188
    14 sg:pub.10.1088/1126-6708/1999/06/036
    15 sg:pub.10.1088/1126-6708/2004/02/014
    16 https://doi.org/10.1002/prop.201500091
    17 https://doi.org/10.1002/prop.201500093
    18 https://doi.org/10.1002/prop.201500095
    19 https://doi.org/10.1088/0264-9381/28/10/105016
    20 https://doi.org/10.1103/physrevd.47.1407
    21 https://doi.org/10.1103/physrevd.90.126007
    22 https://doi.org/10.1103/physrevd.93.086006
    23 https://doi.org/10.1103/physrevd.94.084046
    24 https://doi.org/10.1103/physrevlett.116.191301
    25 https://doi.org/10.1103/physrevlett.36.985
    26 https://doi.org/10.1103/physrevlett.61.1336
    27 schema:datePublished 2018-02
    28 schema:datePublishedReg 2018-02-01
    29 schema:description We introduce the notion of holographic non-computer as a system which exhibits parametrically large delays in the growth of complexity, as calculated within the Complexity-Action proposal. Some known examples of this behavior include extremal black holes and near-extremal hyperbolic black holes. Generic black holes in higher-dimensional gravity also show non-computing features. Within the 1/d expansion of General Relativity, we show that large-d scalings which capture the qualitative features of complexity, such as a linear growth regime and a plateau at exponentially long times, also exhibit an initial computational delay proportional to d. While consistent for large AdS black holes, the required ‘non-computing’ scalings are incompatible with thermodynamic stability for Schwarzschild black holes, unless they are tightly caged.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N45cb1f4cd12f4500a524235f0befe3f1
    34 Ne342844227c5480cb5dbbf39f8af25a8
    35 sg:journal.1052482
    36 schema:name Holographic non-computers
    37 schema:pagination 181
    38 schema:productId Nb0e43db15b3b45b79276200a92f6754f
    39 Ndb741397cdce4872b016a2992959c7c7
    40 Nfdaf5d77236647c5b88141fb745ed1ab
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101293605
    42 https://doi.org/10.1007/jhep02(2018)181
    43 schema:sdDatePublished 2019-04-11T10:38
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Ndb4c27114c8e4bdd928c748a72485c4d
    46 schema:url https://link.springer.com/10.1007%2FJHEP02%282018%29181
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N2d9a089956fa462787f0a5721e06df36 schema:name Instituto de Física Teórica IFT UAM/CSIC, Calle Nicolás Cabrera 13. UAM, Cantoblanco., 28049, Madrid, Spain
    51 rdf:type schema:Organization
    52 N355dd9a5cfa942faa847c7f932177064 rdf:first sg:person.016610763624.93
    53 rdf:rest rdf:nil
    54 N45cb1f4cd12f4500a524235f0befe3f1 schema:issueNumber 2
    55 rdf:type schema:PublicationIssue
    56 N8b8b1ffc52b44189b2025893a32a3229 schema:name Instituto de Física Teórica IFT UAM/CSIC, Calle Nicolás Cabrera 13. UAM, Cantoblanco., 28049, Madrid, Spain
    57 rdf:type schema:Organization
    58 Nb0e43db15b3b45b79276200a92f6754f schema:name doi
    59 schema:value 10.1007/jhep02(2018)181
    60 rdf:type schema:PropertyValue
    61 Nd02e3c39eb6241dfaf7861825afa3979 rdf:first sg:person.011034373745.35
    62 rdf:rest N355dd9a5cfa942faa847c7f932177064
    63 Ndb4c27114c8e4bdd928c748a72485c4d schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Ndb741397cdce4872b016a2992959c7c7 schema:name dimensions_id
    66 schema:value pub.1101293605
    67 rdf:type schema:PropertyValue
    68 Ne342844227c5480cb5dbbf39f8af25a8 schema:volumeNumber 2018
    69 rdf:type schema:PublicationVolume
    70 Nfdaf5d77236647c5b88141fb745ed1ab schema:name readcube_id
    71 schema:value b0c0c0d08d3ca8a32b262b72da963cd4a1527f11c72e299b41b2b12aacd4b661
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Physical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Astronomical and Space Sciences
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1052482 schema:issn 1029-8479
    80 1126-6708
    81 schema:name Journal of High Energy Physics
    82 rdf:type schema:Periodical
    83 sg:person.011034373745.35 schema:affiliation N8b8b1ffc52b44189b2025893a32a3229
    84 schema:familyName Barbón
    85 schema:givenName José L. F.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011034373745.35
    87 rdf:type schema:Person
    88 sg:person.016610763624.93 schema:affiliation N2d9a089956fa462787f0a5721e06df36
    89 schema:familyName Martín-García
    90 schema:givenName Javier
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610763624.93
    92 rdf:type schema:Person
    93 sg:pub.10.1007/bf01208266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003905617
    94 https://doi.org/10.1007/bf01208266
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/jhep01(2017)062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051310133
    97 https://doi.org/10.1007/jhep01(2017)062
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/jhep02(2013)062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023406972
    100 https://doi.org/10.1007/jhep02(2013)062
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/jhep02(2018)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101056499
    103 https://doi.org/10.1007/jhep02(2018)082
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/jhep04(2016)076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004579755
    106 https://doi.org/10.1007/jhep04(2016)076
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/jhep06(2013)009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032852852
    109 https://doi.org/10.1007/jhep06(2013)009
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/jhep08(2010)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017776242
    112 https://doi.org/10.1007/jhep08(2010)031
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep09(2016)161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037732402
    115 https://doi.org/10.1007/jhep09(2016)161
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep11(2015)181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020631790
    118 https://doi.org/10.1007/jhep11(2015)181
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/jhep11(2017)188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093061184
    121 https://doi.org/10.1007/jhep11(2017)188
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1088/1126-6708/1999/06/036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033761809
    124 https://doi.org/10.1088/1126-6708/1999/06/036
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1088/1126-6708/2004/02/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039776934
    127 https://doi.org/10.1088/1126-6708/2004/02/014
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1002/prop.201500091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014177475
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1002/prop.201500093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002366392
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1002/prop.201500095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021945615
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1088/0264-9381/28/10/105016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005309038
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevd.47.1407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060701008
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevd.90.126007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008368776
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevd.93.086006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060712595
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevd.94.084046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714253
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevlett.116.191301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765530
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevlett.36.985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060780501
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevlett.61.1336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797577
    150 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...