Hilbert Series and Mixed Branches of T [SU(N )] theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-07

AUTHORS

Federico Carta, Hirotaka Hayashi

ABSTRACT

We consider mixed branches of 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 T [SU(N )] theory. We compute the Hilbert series of the Coulomb branch part of the mixed branch from a restriction rule acting on the Hilbert series of the full Coulomb branch that will truncate the magnetic charge summation only to the subset of BPS dressed monopole operators that arise in the Coulomb branch sublocus where the mixed branch stems. This restriction can be understood directly from the type IIB brane picture by a relation between the magnetic charges of the monopoles and brane position moduli. We also apply the restriction rule to the Higgs branch part of a given mixed branch by exploiting 3d mirror symmetry. Both ccases show complete agreement with the results calculated by different methods. More... »

PAGES

37

References to SciGraph publications

  • 2004-03-03. Monopole operators in three-dimensional ūĚí© = 4 SYM and mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-29. The moduli space of instantons on an ALE space from 3dN=4 field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aper√ßu in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-31. Hilbert series for moduli spaces of instantons on ‚Ąā2/‚Ą§n in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-11-16. Counting BPS operators in gauge theories: quivers, syzygies and plethystics in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-26. Charges of monopole operators in Chern-Simons Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-11-20. Hilbert series for theories with Aharony duals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-03. Supersymmetry enhancement by monopole operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-01-18. Complete intersection moduli spaces in gauge theories in three dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002. Computational Invariant Theory in NONE
  • 2014-01-24. Supersymmetric gauge theory, (2,0) theory and twisted 5d Super-Yang-Mills in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-11-26. Topological Disorder Operators in Three-Dimensional Conformal Field Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-01-29. TŌĀŌÉ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-01-09. Hilbert series for moduli spaces of two instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-10-10. The moduli spaces of 3dN‚Č•2 Chern-Simons gauge theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-02. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-06-10. Mirror symmetry in three dimensions via gauged linear quivers in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-10-23. The moduli space of vacua of N=2 class S theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-12-17. Construction and deconstruction of single instanton Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2017)037

    DOI

    http://dx.doi.org/10.1007/jhep02(2017)037

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083765372


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica Te\u00f3rica and Instituto de F\u00edsica Te\u00f3rica UAM-CSIC, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049, Madrid, Spain", 
              "id": "http://www.grid.ac/institutes/grid.5515.4", 
              "name": [
                "Departamento de F\u00edsica Te\u00f3rica and Instituto de F\u00edsica Te\u00f3rica UAM-CSIC, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carta", 
            "givenName": "Federico", 
            "id": "sg:person.010130766563.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130766563.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.265061.6", 
              "name": [
                "Departamento de F\u00edsica Te\u00f3rica and Instituto de F\u00edsica Te\u00f3rica UAM-CSIC, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049, Madrid, Spain", 
                "Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayashi", 
            "givenName": "Hirotaka", 
            "id": "sg:person.012413203443.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228754", 
              "https://doi.org/10.1088/1126-6708/2002/11/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2013)070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046707518", 
              "https://doi.org/10.1007/jhep01(2013)070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)174", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008081178", 
              "https://doi.org/10.1007/jhep12(2015)174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041675977", 
              "https://doi.org/10.1007/jhep08(2016)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2004/03/008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010577780", 
              "https://doi.org/10.1088/1126-6708/2004/03/008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2014)059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053069294", 
              "https://doi.org/10.1007/jhep06(2014)059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028292328", 
              "https://doi.org/10.1007/jhep11(2015)132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046870432", 
              "https://doi.org/10.1007/jhep05(2011)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863349", 
              "https://doi.org/10.1007/jhep01(2014)142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036695386", 
              "https://doi.org/10.1007/jhep01(2010)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036190561", 
              "https://doi.org/10.1007/jhep01(2014)182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/11/050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013703167", 
              "https://doi.org/10.1088/1126-6708/2007/11/050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2014)134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028849658", 
              "https://doi.org/10.1007/jhep10(2014)134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029279197", 
              "https://doi.org/10.1007/jhep10(2016)046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2012)079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043468416", 
              "https://doi.org/10.1007/jhep01(2012)079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2015)118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012023071", 
              "https://doi.org/10.1007/jhep12(2015)118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-04958-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048017298", 
              "https://doi.org/10.1007/978-3-662-04958-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-07", 
        "datePublishedReg": "2017-02-07", 
        "description": "We consider mixed branches of 3dN\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 T [SU(N )] theory. We compute the Hilbert series of the Coulomb branch part of the mixed branch from a restriction rule acting on the Hilbert series of the full Coulomb branch that will truncate the magnetic charge summation only to the subset of BPS dressed monopole operators that arise in the Coulomb branch sublocus where the mixed branch stems. This restriction can be understood directly from the type IIB brane picture by a relation between the magnetic charges of the monopoles and brane position moduli. We also apply the restriction rule to the Higgs branch part of a given mixed branch by exploiting 3d mirror symmetry. Both ccases show complete agreement with the results calculated by different methods.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2017)037", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "branches", 
          "series", 
          "subset", 
          "BPS", 
          "sublocus", 
          "complete agreement", 
          "mixed branches", 
          "Hilbert series", 
          "part", 
          "restriction rules", 
          "Coulomb branch", 
          "summation", 
          "monopole operators", 
          "restriction", 
          "brane picture", 
          "picture", 
          "relation", 
          "CCAS", 
          "results", 
          "different methods", 
          "theory", 
          "branch part", 
          "operators", 
          "magnetic charges", 
          "mirror symmetry", 
          "method", 
          "rules", 
          "charge", 
          "monopole", 
          "symmetry", 
          "agreement", 
          "modulus", 
          "Coulomb branch part", 
          "full Coulomb branch", 
          "magnetic charge summation", 
          "charge summation", 
          "subset of BPS", 
          "Coulomb branch sublocus", 
          "branch sublocus", 
          "type IIB brane picture", 
          "IIB brane picture", 
          "brane position moduli", 
          "position moduli", 
          "Higgs branch part"
        ], 
        "name": "Hilbert Series and Mixed Branches of T [SU(N )] theories", 
        "pagination": "37", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083765372"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2017)037"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2017)037", 
          "https://app.dimensions.ai/details/publication/pub.1083765372"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_743.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2017)037"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)037'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)037'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)037'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)037'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      22 PREDICATES      94 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2017)037 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nfa05113eaf4e4026a8c745d8533435cd
    4 schema:citation sg:pub.10.1007/978-3-662-04958-7
    5 sg:pub.10.1007/jhep01(2010)110
    6 sg:pub.10.1007/jhep01(2012)079
    7 sg:pub.10.1007/jhep01(2013)070
    8 sg:pub.10.1007/jhep01(2014)005
    9 sg:pub.10.1007/jhep01(2014)142
    10 sg:pub.10.1007/jhep01(2014)182
    11 sg:pub.10.1007/jhep01(2015)150
    12 sg:pub.10.1007/jhep05(2011)015
    13 sg:pub.10.1007/jhep06(2010)100
    14 sg:pub.10.1007/jhep06(2014)059
    15 sg:pub.10.1007/jhep08(2016)016
    16 sg:pub.10.1007/jhep09(2014)178
    17 sg:pub.10.1007/jhep09(2014)185
    18 sg:pub.10.1007/jhep10(2014)134
    19 sg:pub.10.1007/jhep10(2016)046
    20 sg:pub.10.1007/jhep11(2015)132
    21 sg:pub.10.1007/jhep12(2014)103
    22 sg:pub.10.1007/jhep12(2015)118
    23 sg:pub.10.1007/jhep12(2015)174
    24 sg:pub.10.1088/1126-6708/2002/11/049
    25 sg:pub.10.1088/1126-6708/2002/12/044
    26 sg:pub.10.1088/1126-6708/2004/03/008
    27 sg:pub.10.1088/1126-6708/2007/11/050
    28 sg:pub.10.1088/1126-6708/2008/05/099
    29 schema:datePublished 2017-02-07
    30 schema:datePublishedReg 2017-02-07
    31 schema:description We consider mixed branches of 3dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 T [SU(N )] theory. We compute the Hilbert series of the Coulomb branch part of the mixed branch from a restriction rule acting on the Hilbert series of the full Coulomb branch that will truncate the magnetic charge summation only to the subset of BPS dressed monopole operators that arise in the Coulomb branch sublocus where the mixed branch stems. This restriction can be understood directly from the type IIB brane picture by a relation between the magnetic charges of the monopoles and brane position moduli. We also apply the restriction rule to the Higgs branch part of a given mixed branch by exploiting 3d mirror symmetry. Both ccases show complete agreement with the results calculated by different methods.
    32 schema:genre article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N2254ec1cbe3b497e963a2dc2347f212f
    36 Nc6768029cad549f9944bbf6c50d8d519
    37 sg:journal.1052482
    38 schema:keywords BPS
    39 CCAS
    40 Coulomb branch
    41 Coulomb branch part
    42 Coulomb branch sublocus
    43 Higgs branch part
    44 Hilbert series
    45 IIB brane picture
    46 agreement
    47 branch part
    48 branch sublocus
    49 branches
    50 brane picture
    51 brane position moduli
    52 charge
    53 charge summation
    54 complete agreement
    55 different methods
    56 full Coulomb branch
    57 magnetic charge summation
    58 magnetic charges
    59 method
    60 mirror symmetry
    61 mixed branches
    62 modulus
    63 monopole
    64 monopole operators
    65 operators
    66 part
    67 picture
    68 position moduli
    69 relation
    70 restriction
    71 restriction rules
    72 results
    73 rules
    74 series
    75 sublocus
    76 subset
    77 subset of BPS
    78 summation
    79 symmetry
    80 theory
    81 type IIB brane picture
    82 schema:name Hilbert Series and Mixed Branches of T [SU(N )] theories
    83 schema:pagination 37
    84 schema:productId N0efc1e880a384e7fb6264181b67b7b00
    85 N40b2daf2890140aba3ad2244e0443652
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083765372
    87 https://doi.org/10.1007/jhep02(2017)037
    88 schema:sdDatePublished 2022-01-01T18:44
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Ncdfe042402c6458dad0c95c397b9549f
    91 schema:url https://doi.org/10.1007/jhep02(2017)037
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N0efc1e880a384e7fb6264181b67b7b00 schema:name dimensions_id
    96 schema:value pub.1083765372
    97 rdf:type schema:PropertyValue
    98 N2254ec1cbe3b497e963a2dc2347f212f schema:volumeNumber 2017
    99 rdf:type schema:PublicationVolume
    100 N40b2daf2890140aba3ad2244e0443652 schema:name doi
    101 schema:value 10.1007/jhep02(2017)037
    102 rdf:type schema:PropertyValue
    103 Nc6768029cad549f9944bbf6c50d8d519 schema:issueNumber 2
    104 rdf:type schema:PublicationIssue
    105 Ncdfe042402c6458dad0c95c397b9549f schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Ne5bdceaff2994a03abba70cf3132b3d2 rdf:first sg:person.012413203443.40
    108 rdf:rest rdf:nil
    109 Nfa05113eaf4e4026a8c745d8533435cd rdf:first sg:person.010130766563.50
    110 rdf:rest Ne5bdceaff2994a03abba70cf3132b3d2
    111 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Mathematical Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Pure Mathematics
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1052482 schema:issn 1029-8479
    118 1126-6708
    119 schema:name Journal of High Energy Physics
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.010130766563.50 schema:affiliation grid-institutes:grid.5515.4
    123 schema:familyName Carta
    124 schema:givenName Federico
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130766563.50
    126 rdf:type schema:Person
    127 sg:person.012413203443.40 schema:affiliation grid-institutes:grid.265061.6
    128 schema:familyName Hayashi
    129 schema:givenName Hirotaka
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012413203443.40
    131 rdf:type schema:Person
    132 sg:pub.10.1007/978-3-662-04958-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048017298
    133 https://doi.org/10.1007/978-3-662-04958-7
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
    136 https://doi.org/10.1007/jhep01(2010)110
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/jhep01(2012)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043468416
    139 https://doi.org/10.1007/jhep01(2012)079
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/jhep01(2013)070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046707518
    142 https://doi.org/10.1007/jhep01(2013)070
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    145 https://doi.org/10.1007/jhep01(2014)005
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/jhep01(2014)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863349
    148 https://doi.org/10.1007/jhep01(2014)142
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/jhep01(2014)182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036190561
    151 https://doi.org/10.1007/jhep01(2014)182
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    154 https://doi.org/10.1007/jhep01(2015)150
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
    157 https://doi.org/10.1007/jhep05(2011)015
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    160 https://doi.org/10.1007/jhep06(2010)100
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/jhep06(2014)059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053069294
    163 https://doi.org/10.1007/jhep06(2014)059
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/jhep08(2016)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
    166 https://doi.org/10.1007/jhep08(2016)016
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    169 https://doi.org/10.1007/jhep09(2014)178
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    172 https://doi.org/10.1007/jhep09(2014)185
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/jhep10(2014)134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028849658
    175 https://doi.org/10.1007/jhep10(2014)134
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/jhep10(2016)046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029279197
    178 https://doi.org/10.1007/jhep10(2016)046
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/jhep11(2015)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028292328
    181 https://doi.org/10.1007/jhep11(2015)132
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    184 https://doi.org/10.1007/jhep12(2014)103
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/jhep12(2015)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023071
    187 https://doi.org/10.1007/jhep12(2015)118
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/jhep12(2015)174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008081178
    190 https://doi.org/10.1007/jhep12(2015)174
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
    193 https://doi.org/10.1088/1126-6708/2002/11/049
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    196 https://doi.org/10.1088/1126-6708/2002/12/044
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1088/1126-6708/2004/03/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010577780
    199 https://doi.org/10.1088/1126-6708/2004/03/008
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1088/1126-6708/2007/11/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013703167
    202 https://doi.org/10.1088/1126-6708/2007/11/050
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    205 https://doi.org/10.1088/1126-6708/2008/05/099
    206 rdf:type schema:CreativeWork
    207 grid-institutes:grid.265061.6 schema:alternateName Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka, Kanagawa, Japan
    208 schema:name Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
    209 Tokai University, 4-1-1 Kitakaname, 259-1292, Hiratsuka, Kanagawa, Japan
    210 rdf:type schema:Organization
    211 grid-institutes:grid.5515.4 schema:alternateName Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
    212 schema:name Departamento de Física Teórica and Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...