Algebraic properties of the monopole formula View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02

AUTHORS

Amihay Hanany, Marcus Sperling

ABSTRACT

The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4 gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t → ∞ equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories. More... »

PAGES

23

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/jhep02(2017)023

DOI

http://dx.doi.org/10.1007/jhep02(2017)023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083698145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanany", 
        "givenName": "Amihay", 
        "id": "sg:person.012155553275.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Wien, Boltzmanngasse 5, 1200, Wien, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sperling", 
        "givenName": "Marcus", 
        "id": "sg:person.013671173243.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep06(2016)130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002377219", 
          "https://doi.org/10.1007/jhep06(2016)130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2016)130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002377219", 
          "https://doi.org/10.1007/jhep06(2016)130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2014)005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004476555", 
          "https://doi.org/10.1007/jhep01(2014)005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(78)90045-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004911561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/48/45/455401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006273925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1011483333", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6911-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011483333", 
          "https://doi.org/10.1007/978-1-4757-6911-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6911-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011483333", 
          "https://doi.org/10.1007/978-1-4757-6911-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2014)185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012825945", 
          "https://doi.org/10.1007/jhep09(2014)185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016537713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016537713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90221-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020399525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025415964", 
          "https://doi.org/10.1088/1126-6708/2002/12/044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2015)132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028292328", 
          "https://doi.org/10.1007/jhep11(2015)132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2016)046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029279197", 
          "https://doi.org/10.1007/jhep10(2016)046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2016)046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029279197", 
          "https://doi.org/10.1007/jhep10(2016)046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030228754", 
          "https://doi.org/10.1088/1126-6708/2002/11/049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695386", 
          "https://doi.org/10.1007/jhep01(2010)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2010)110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036695386", 
          "https://doi.org/10.1007/jhep01(2010)110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep12(2014)103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036891425", 
          "https://doi.org/10.1007/jhep12(2014)103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep06(2010)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820025", 
          "https://doi.org/10.1007/jhep06(2010)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040885179", 
          "https://doi.org/10.1007/jhep11(2016)175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040885179", 
          "https://doi.org/10.1007/jhep11(2016)175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02565876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041235603", 
          "https://doi.org/10.1007/bf02565876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2016)016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041675977", 
          "https://doi.org/10.1007/jhep08(2016)016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep08(2016)016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041675977", 
          "https://doi.org/10.1007/jhep08(2016)016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2011)015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046870432", 
          "https://doi.org/10.1007/jhep05(2011)015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2015)150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048031409", 
          "https://doi.org/10.1007/jhep01(2015)150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2014)178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052177898", 
          "https://doi.org/10.1007/jhep09(2014)178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.2728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/jsag.2009.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069062032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2009.v13.n3.a5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2016.v20.n3.a4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072457481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511608681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098739720"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4 gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t \u2192 \u221e equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/jhep02(2017)023", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2755951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3861842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1052482", 
        "issn": [
          "1126-6708", 
          "1029-8479"
        ], 
        "name": "Journal of High Energy Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2017"
      }
    ], 
    "name": "Algebraic properties of the monopole formula", 
    "pagination": "23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c9432b511e494adbd4e25ff3f05a3aab490c994f9680fe500585227c04976d56"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/jhep02(2017)023"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083698145"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/jhep02(2017)023", 
      "https://app.dimensions.ai/details/publication/pub.1083698145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88230_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2FJHEP02%282017%29023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/jhep02(2017)023 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf4c72ff884934b719a24f99f467412e8
4 schema:citation sg:pub.10.1007/978-1-4757-6911-1
5 sg:pub.10.1007/bf02565876
6 sg:pub.10.1007/jhep01(2010)110
7 sg:pub.10.1007/jhep01(2014)005
8 sg:pub.10.1007/jhep01(2015)150
9 sg:pub.10.1007/jhep05(2011)015
10 sg:pub.10.1007/jhep06(2010)100
11 sg:pub.10.1007/jhep06(2016)130
12 sg:pub.10.1007/jhep08(2016)016
13 sg:pub.10.1007/jhep09(2014)178
14 sg:pub.10.1007/jhep09(2014)185
15 sg:pub.10.1007/jhep10(2016)046
16 sg:pub.10.1007/jhep11(2015)132
17 sg:pub.10.1007/jhep11(2016)175
18 sg:pub.10.1007/jhep12(2014)103
19 sg:pub.10.1088/1126-6708/2002/11/049
20 sg:pub.10.1088/1126-6708/2002/12/044
21 https://app.dimensions.ai/details/publication/pub.1011483333
22 https://doi.org/10.1016/0001-8708(78)90045-2
23 https://doi.org/10.1016/0550-3213(77)90221-8
24 https://doi.org/10.1016/0550-3213(78)90153-0
25 https://doi.org/10.1017/cbo9780511608681
26 https://doi.org/10.1088/1751-8113/48/45/455401
27 https://doi.org/10.1103/physrevd.14.2728
28 https://doi.org/10.2140/jsag.2009.1.11
29 https://doi.org/10.4310/atmp.2009.v13.n3.a5
30 https://doi.org/10.4310/atmp.2016.v20.n3.a4
31 schema:datePublished 2017-02
32 schema:datePublishedReg 2017-02-01
33 schema:description The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4 gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t → ∞ equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N2d3e9f39f11d427fb82bfc866d8424de
38 N92e5b546e67c44b1bba24198f7df5cbb
39 sg:journal.1052482
40 schema:name Algebraic properties of the monopole formula
41 schema:pagination 23
42 schema:productId N28a5be17219a45599b0c83203523b511
43 Nb0360e0b2b054a779360337cf7b1fed7
44 Ncd65ced2cc1544e18e5df541fe9ea6fe
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
46 https://doi.org/10.1007/jhep02(2017)023
47 schema:sdDatePublished 2019-04-11T13:08
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Na6b8a8e721f34b41b2d5a435064c7101
50 schema:url https://link.springer.com/10.1007%2FJHEP02%282017%29023
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N28a5be17219a45599b0c83203523b511 schema:name readcube_id
55 schema:value c9432b511e494adbd4e25ff3f05a3aab490c994f9680fe500585227c04976d56
56 rdf:type schema:PropertyValue
57 N2d3e9f39f11d427fb82bfc866d8424de schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 N92e5b546e67c44b1bba24198f7df5cbb schema:volumeNumber 2017
60 rdf:type schema:PublicationVolume
61 Na6b8a8e721f34b41b2d5a435064c7101 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nb0360e0b2b054a779360337cf7b1fed7 schema:name doi
64 schema:value 10.1007/jhep02(2017)023
65 rdf:type schema:PropertyValue
66 Ncd65ced2cc1544e18e5df541fe9ea6fe schema:name dimensions_id
67 schema:value pub.1083698145
68 rdf:type schema:PropertyValue
69 Nf4c72ff884934b719a24f99f467412e8 rdf:first sg:person.012155553275.80
70 rdf:rest Nfa4cb34c2adc40708afd46fa6d76131b
71 Nfa4cb34c2adc40708afd46fa6d76131b rdf:first sg:person.013671173243.88
72 rdf:rest rdf:nil
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2017)023
80 rdf:type schema:MonetaryGrant
81 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2017)023
82 rdf:type schema:MonetaryGrant
83 sg:journal.1052482 schema:issn 1029-8479
84 1126-6708
85 schema:name Journal of High Energy Physics
86 rdf:type schema:Periodical
87 sg:person.012155553275.80 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
88 schema:familyName Hanany
89 schema:givenName Amihay
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
91 rdf:type schema:Person
92 sg:person.013671173243.88 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
93 schema:familyName Sperling
94 schema:givenName Marcus
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
96 rdf:type schema:Person
97 sg:pub.10.1007/978-1-4757-6911-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011483333
98 https://doi.org/10.1007/978-1-4757-6911-1
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
101 https://doi.org/10.1007/bf02565876
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
104 https://doi.org/10.1007/jhep01(2010)110
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
107 https://doi.org/10.1007/jhep01(2014)005
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
110 https://doi.org/10.1007/jhep01(2015)150
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
113 https://doi.org/10.1007/jhep05(2011)015
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
116 https://doi.org/10.1007/jhep06(2010)100
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
119 https://doi.org/10.1007/jhep06(2016)130
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/jhep08(2016)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
122 https://doi.org/10.1007/jhep08(2016)016
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
125 https://doi.org/10.1007/jhep09(2014)178
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
128 https://doi.org/10.1007/jhep09(2014)185
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/jhep10(2016)046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029279197
131 https://doi.org/10.1007/jhep10(2016)046
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/jhep11(2015)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028292328
134 https://doi.org/10.1007/jhep11(2015)132
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
137 https://doi.org/10.1007/jhep11(2016)175
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
140 https://doi.org/10.1007/jhep12(2014)103
141 rdf:type schema:CreativeWork
142 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
143 https://doi.org/10.1088/1126-6708/2002/11/049
144 rdf:type schema:CreativeWork
145 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
146 https://doi.org/10.1088/1126-6708/2002/12/044
147 rdf:type schema:CreativeWork
148 https://app.dimensions.ai/details/publication/pub.1011483333 schema:CreativeWork
149 https://doi.org/10.1016/0001-8708(78)90045-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004911561
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0550-3213(77)90221-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020399525
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0550-3213(78)90153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016537713
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1017/cbo9780511608681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098739720
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/1751-8113/48/45/455401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006273925
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevd.14.2728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684345
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2140/jsag.2009.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069062032
162 rdf:type schema:CreativeWork
163 https://doi.org/10.4310/atmp.2009.v13.n3.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457262
164 rdf:type schema:CreativeWork
165 https://doi.org/10.4310/atmp.2016.v20.n3.a4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457481
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
168 schema:name Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1200, Wien, Austria
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
171 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...