Algebraic properties of the monopole formula View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-06

AUTHORS

Amihay Hanany, Marcus Sperling

ABSTRACT

The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t → ∞ equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories. More... »

PAGES

23

References to SciGraph publications

  • 2016-10-10. The moduli spaces of 3dN≥2 Chern-Simons gauge theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 1982-12. On the geometry of conjugacy classes in classical groups in COMMENTARII MATHEMATICI HELVETICI
  • 2015-01-29. Tρσ(G) theories and their Hilbert series in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-26. Charges of monopole operators in Chern-Simons Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-03. Monopole operators and Hilbert series of Coulomb branches of 3d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-08-02. Coulomb branches for rank 2 gauge groups in 3dN=4 gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11-29. Branes and the Kraft-Procesi transition in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998. Using Algebraic Geometry in NONE
  • 2015-11-20. Hilbert series for theories with Aharony duals in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002-12-13. Monopole Operators and Mirror Symmetry in Three Dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-06-21. Quiver theories for moduli spaces of classical group nilpotent orbits in JOURNAL OF HIGH ENERGY PHYSICS
  • 1995. Lectures on Polytopes, Updated Seventh Printing of the First Edition in NONE
  • 2014-12-16. Coulomb branch and the moduli space of instantons in JOURNAL OF HIGH ENERGY PHYSICS
  • 2002. Computations in Algebraic Geometry with Macaulay 2 in NONE
  • 2002-11-26. Topological Disorder Operators in Three-Dimensional Conformal Field Theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-09-30. Coulomb branch Hilbert series and Hall-Littlewood polynomials in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-03. Supersymmetry enhancement by monopole operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009. Polytopes, Rings, and K-Theory in NONE
  • 2014-09-30. Coulomb branch Hilbert series and three dimensional Sicilian theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2017)023

    DOI

    http://dx.doi.org/10.1007/jhep02(2017)023

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083698145


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hanany", 
            "givenName": "Amihay", 
            "id": "sg:person.012155553275.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Wien, Boltzmanngasse 5, 1200, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.10420.37", 
              "name": [
                "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Wien, Boltzmanngasse 5, 1200, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sperling", 
            "givenName": "Marcus", 
            "id": "sg:person.013671173243.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2015)150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048031409", 
              "https://doi.org/10.1007/jhep01(2015)150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2016)016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041675977", 
              "https://doi.org/10.1007/jhep08(2016)016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2014)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004476555", 
              "https://doi.org/10.1007/jhep01(2014)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036891425", 
              "https://doi.org/10.1007/jhep12(2014)103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052177898", 
              "https://doi.org/10.1007/jhep09(2014)178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/12/044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025415964", 
              "https://doi.org/10.1088/1126-6708/2002/12/044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-6911-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011483333", 
              "https://doi.org/10.1007/978-1-4757-6911-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2014)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012825945", 
              "https://doi.org/10.1007/jhep09(2014)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046870432", 
              "https://doi.org/10.1007/jhep05(2011)015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885179", 
              "https://doi.org/10.1007/jhep11(2016)175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b105283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026452159", 
              "https://doi.org/10.1007/b105283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-04851-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029606445", 
              "https://doi.org/10.1007/978-3-662-04851-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02565876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041235603", 
              "https://doi.org/10.1007/bf02565876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2016)046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029279197", 
              "https://doi.org/10.1007/jhep10(2016)046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8431-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034126804", 
              "https://doi.org/10.1007/978-1-4613-8431-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036695386", 
              "https://doi.org/10.1007/jhep01(2010)110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2002/11/049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030228754", 
              "https://doi.org/10.1088/1126-6708/2002/11/049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2016)130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002377219", 
              "https://doi.org/10.1007/jhep06(2016)130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2015)132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028292328", 
              "https://doi.org/10.1007/jhep11(2015)132"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-06", 
        "datePublishedReg": "2017-02-06", 
        "description": "The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$ \\mathcal{N}=4 $$\\end{document} gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t \u2192 \u221e equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2017)023", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3861842", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2755951", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6206399", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6502537", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2017"
          }
        ], 
        "keywords": [
          "gauge theory", 
          "Hilbert series", 
          "monopole formula", 
          "computer algebra program", 
          "higher-rank gauge theories", 
          "quaternionic dimension", 
          "BPS monopole operators", 
          "algebra program", 
          "algebraic properties", 
          "moduli space", 
          "monopole operators", 
          "Coulomb branch", 
          "chiral ring", 
          "explicit expressions", 
          "gauge group", 
          "theory", 
          "formula", 
          "operators", 
          "monoids", 
          "space", 
          "applicability", 
          "dimensions", 
          "poles", 
          "properties", 
          "applications", 
          "approach", 
          "branches", 
          "order", 
          "corresponding collection", 
          "implementation", 
          "series", 
          "concept", 
          "ring", 
          "matter content", 
          "fans", 
          "collection", 
          "expression", 
          "program", 
          "group", 
          "content"
        ], 
        "name": "Algebraic properties of the monopole formula", 
        "pagination": "23", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083698145"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2017)023"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2017)023", 
          "https://app.dimensions.ai/details/publication/pub.1083698145"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_752.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2017)023"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2017)023'


     

    This table displays all metadata directly associated to this object as RDF triples.

    195 TRIPLES      21 PREDICATES      84 URIs      56 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2017)023 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0c808a5d38fa4d3490f4c5329648b26f
    4 schema:citation sg:pub.10.1007/978-1-4613-8431-1
    5 sg:pub.10.1007/978-1-4757-6911-1
    6 sg:pub.10.1007/978-3-662-04851-1
    7 sg:pub.10.1007/b105283
    8 sg:pub.10.1007/bf02565876
    9 sg:pub.10.1007/jhep01(2010)110
    10 sg:pub.10.1007/jhep01(2014)005
    11 sg:pub.10.1007/jhep01(2015)150
    12 sg:pub.10.1007/jhep05(2011)015
    13 sg:pub.10.1007/jhep06(2010)100
    14 sg:pub.10.1007/jhep06(2016)130
    15 sg:pub.10.1007/jhep08(2016)016
    16 sg:pub.10.1007/jhep09(2014)178
    17 sg:pub.10.1007/jhep09(2014)185
    18 sg:pub.10.1007/jhep10(2016)046
    19 sg:pub.10.1007/jhep11(2015)132
    20 sg:pub.10.1007/jhep11(2016)175
    21 sg:pub.10.1007/jhep12(2014)103
    22 sg:pub.10.1088/1126-6708/2002/11/049
    23 sg:pub.10.1088/1126-6708/2002/12/044
    24 schema:datePublished 2017-02-06
    25 schema:datePublishedReg 2017-02-06
    26 schema:description The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t → ∞ equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.
    27 schema:genre article
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N04f1d9f7854b425884eeaab7a278d610
    30 N9e74a78dcfe8469985b9476ee687ed6e
    31 sg:journal.1052482
    32 schema:keywords BPS monopole operators
    33 Coulomb branch
    34 Hilbert series
    35 algebra program
    36 algebraic properties
    37 applicability
    38 applications
    39 approach
    40 branches
    41 chiral ring
    42 collection
    43 computer algebra program
    44 concept
    45 content
    46 corresponding collection
    47 dimensions
    48 explicit expressions
    49 expression
    50 fans
    51 formula
    52 gauge group
    53 gauge theory
    54 group
    55 higher-rank gauge theories
    56 implementation
    57 matter content
    58 moduli space
    59 monoids
    60 monopole formula
    61 monopole operators
    62 operators
    63 order
    64 poles
    65 program
    66 properties
    67 quaternionic dimension
    68 ring
    69 series
    70 space
    71 theory
    72 schema:name Algebraic properties of the monopole formula
    73 schema:pagination 23
    74 schema:productId N1784ee459f494b88b75d6a2a7ac1fe35
    75 Ndfee8f3e7d3b47b78b0eef2fa94a9699
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083698145
    77 https://doi.org/10.1007/jhep02(2017)023
    78 schema:sdDatePublished 2022-09-02T16:01
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N708e2d4cb62a4aefb01e7062b3e18c6a
    81 schema:url https://doi.org/10.1007/jhep02(2017)023
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N04f1d9f7854b425884eeaab7a278d610 schema:issueNumber 2
    86 rdf:type schema:PublicationIssue
    87 N0c808a5d38fa4d3490f4c5329648b26f rdf:first sg:person.012155553275.80
    88 rdf:rest Nd367543a7a604f64bc9ac4f9c9398edb
    89 N1784ee459f494b88b75d6a2a7ac1fe35 schema:name doi
    90 schema:value 10.1007/jhep02(2017)023
    91 rdf:type schema:PropertyValue
    92 N708e2d4cb62a4aefb01e7062b3e18c6a schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N9e74a78dcfe8469985b9476ee687ed6e schema:volumeNumber 2017
    95 rdf:type schema:PublicationVolume
    96 Nd367543a7a604f64bc9ac4f9c9398edb rdf:first sg:person.013671173243.88
    97 rdf:rest rdf:nil
    98 Ndfee8f3e7d3b47b78b0eef2fa94a9699 schema:name dimensions_id
    99 schema:value pub.1083698145
    100 rdf:type schema:PropertyValue
    101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Mathematical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Pure Mathematics
    106 rdf:type schema:DefinedTerm
    107 sg:grant.2755951 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2017)023
    108 rdf:type schema:MonetaryGrant
    109 sg:grant.3861842 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2017)023
    110 rdf:type schema:MonetaryGrant
    111 sg:grant.6206399 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2017)023
    112 rdf:type schema:MonetaryGrant
    113 sg:grant.6502537 http://pending.schema.org/fundedItem sg:pub.10.1007/jhep02(2017)023
    114 rdf:type schema:MonetaryGrant
    115 sg:journal.1052482 schema:issn 1029-8479
    116 1126-6708
    117 schema:name Journal of High Energy Physics
    118 schema:publisher Springer Nature
    119 rdf:type schema:Periodical
    120 sg:person.012155553275.80 schema:affiliation grid-institutes:grid.7445.2
    121 schema:familyName Hanany
    122 schema:givenName Amihay
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012155553275.80
    124 rdf:type schema:Person
    125 sg:person.013671173243.88 schema:affiliation grid-institutes:grid.10420.37
    126 schema:familyName Sperling
    127 schema:givenName Marcus
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013671173243.88
    129 rdf:type schema:Person
    130 sg:pub.10.1007/978-1-4613-8431-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034126804
    131 https://doi.org/10.1007/978-1-4613-8431-1
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-1-4757-6911-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011483333
    134 https://doi.org/10.1007/978-1-4757-6911-1
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-3-662-04851-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029606445
    137 https://doi.org/10.1007/978-3-662-04851-1
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/b105283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026452159
    140 https://doi.org/10.1007/b105283
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02565876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041235603
    143 https://doi.org/10.1007/bf02565876
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/jhep01(2010)110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036695386
    146 https://doi.org/10.1007/jhep01(2010)110
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/jhep01(2014)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004476555
    149 https://doi.org/10.1007/jhep01(2014)005
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/jhep01(2015)150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048031409
    152 https://doi.org/10.1007/jhep01(2015)150
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep05(2011)015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870432
    155 https://doi.org/10.1007/jhep05(2011)015
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    158 https://doi.org/10.1007/jhep06(2010)100
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep06(2016)130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002377219
    161 https://doi.org/10.1007/jhep06(2016)130
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep08(2016)016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041675977
    164 https://doi.org/10.1007/jhep08(2016)016
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep09(2014)178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052177898
    167 https://doi.org/10.1007/jhep09(2014)178
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep09(2014)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012825945
    170 https://doi.org/10.1007/jhep09(2014)185
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep10(2016)046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029279197
    173 https://doi.org/10.1007/jhep10(2016)046
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep11(2015)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028292328
    176 https://doi.org/10.1007/jhep11(2015)132
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep11(2016)175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885179
    179 https://doi.org/10.1007/jhep11(2016)175
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep12(2014)103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036891425
    182 https://doi.org/10.1007/jhep12(2014)103
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1088/1126-6708/2002/11/049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228754
    185 https://doi.org/10.1088/1126-6708/2002/11/049
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1088/1126-6708/2002/12/044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025415964
    188 https://doi.org/10.1088/1126-6708/2002/12/044
    189 rdf:type schema:CreativeWork
    190 grid-institutes:grid.10420.37 schema:alternateName Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1200, Wien, Austria
    191 schema:name Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1200, Wien, Austria
    192 rdf:type schema:Organization
    193 grid-institutes:grid.7445.2 schema:alternateName Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    194 schema:name Theoretical Physics Group, Imperial College London, Prince Consort Road, SW7 2AZ, London, U.K.
    195 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...