6d Conformal matter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-10

AUTHORS

Michele Del Zotto, Jonathan J. Heckman, Alessandro Tomasiello, Cumrun Vafa

ABSTRACT

A single M5-brane probing G, an ADE-type singularity, leads to a system which has G × G global symmetry and can be viewed as “bifundamental” (G, G) matter. For the AN series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1, 0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E8 × G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G, G′) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1, 0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals. More... »

PAGES

54

References to SciGraph publications

  • 2014-12-01. Holography for (1,0) theories in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-07-06. T-branes and monodromy in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-02-13. Supersymmetric Boundary Conditions in Super Yang-Mills Theory in JOURNAL OF STATISTICAL PHYSICS
  • 2010-11-25. SCFTs from brane monodromy in JOURNAL OF HIGH ENERGY PHYSICS
  • 1980. Simple Singularities and Simple Algebraic Groups in NONE
  • 2014-08-01. Anomaly polynomial of E-string theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-07-18. The conformal sector of F-theory GUTs in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-02-11. Toroidal compactification without vector structure in JOURNAL OF HIGH ENERGY PHYSICS
  • 1997-09-02. A note on enhanced gauge symmetries in M- and string theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-07. On the classification of 6D SCFTs and generalized ADE orbifolds in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999-07-07. Issues on orientifolds: on the brane construction of gauge theories with SO(2n) global symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-01-23. GUTs and exceptional branes in F-theory — I in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-14. Three dimensional mirror symmetry and partition function on S3 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-05-04. T-branes and Yukawa couplings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-04-09. All AdS7 solutions of type II supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-05-19. T-branes and geometry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-27. Baryon and dark matter genesis from strongly coupled strings in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-17. Gluing branes — II: flavour physics and string duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-07-22. Non-simply-connected gauge groups and rational points on elliptic curves in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-14. Gluing branes — I in JOURNAL OF HIGH ENERGY PHYSICS
  • 1998-03-21. Branes at orbifolds versus Hanany Witten in six dimensions in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/jhep02(2015)054

    DOI

    http://dx.doi.org/10.1007/jhep02(2015)054

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022076696


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Del Zotto", 
            "givenName": "Michele", 
            "id": "sg:person.015737202107.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015737202107.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of North Carolina, 27599, Chapel Hill, NC, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.", 
                "Department of Physics, University of North Carolina, 27599, Chapel Hill, NC, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heckman", 
            "givenName": "Jonathan J.", 
            "id": "sg:person.013340640304.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013340640304.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dipartimento di Fisica, Universit\u00e0 di Milano Bicocca, Milan, Italy", 
              "id": "http://www.grid.ac/institutes/grid.7563.7", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Milano Bicocca, Milan, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tomasiello", 
            "givenName": "Alessandro", 
            "id": "sg:person.015537354277.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015537354277.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vafa", 
            "givenName": "Cumrun", 
            "id": "sg:person.014523005000.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep04(2014)064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033915149", 
              "https://doi.org/10.1007/jhep04(2014)064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1997/09/001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017830394", 
              "https://doi.org/10.1088/1126-6708/1997/09/001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2011)030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012431406", 
              "https://doi.org/10.1007/jhep07(2011)030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2011)023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026644863", 
              "https://doi.org/10.1007/jhep05(2011)023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016623483", 
              "https://doi.org/10.1007/jhep05(2014)028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/03/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049975593", 
              "https://doi.org/10.1088/1126-6708/1998/03/003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052193752", 
              "https://doi.org/10.1007/jhep05(2014)080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051790309", 
              "https://doi.org/10.1007/jhep11(2010)132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2014)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052599681", 
              "https://doi.org/10.1007/jhep12(2014)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021558045", 
              "https://doi.org/10.1007/jhep05(2013)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep07(2011)075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007650643", 
              "https://doi.org/10.1007/jhep07(2011)075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023581283", 
              "https://doi.org/10.1007/jhep06(2011)120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024132084", 
              "https://doi.org/10.1007/jhep10(2013)086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1999/07/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018492151", 
              "https://doi.org/10.1088/1126-6708/1999/07/009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2014)002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045641286", 
              "https://doi.org/10.1007/jhep08(2014)002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/01/058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041338859", 
              "https://doi.org/10.1088/1126-6708/2009/01/058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046275015", 
              "https://doi.org/10.1007/jhep05(2013)068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0090294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020531009", 
              "https://doi.org/10.1007/bfb0090294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/02/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046085625", 
              "https://doi.org/10.1088/1126-6708/1998/02/006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/1998/07/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002419177", 
              "https://doi.org/10.1088/1126-6708/1998/07/012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-009-9687-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023816735", 
              "https://doi.org/10.1007/s10955-009-9687-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-02-10", 
        "datePublishedReg": "2015-02-10", 
        "description": "A single M5-brane probing G, an ADE-type singularity, leads to a system which has G \u00d7 G global symmetry and can be viewed as \u201cbifundamental\u201d (G, G) matter. For the AN series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1, 0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Ho\u0159ava-Witten wall leads to a superconformal matter system with E8 \u00d7 G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G, G\u2032) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Ho\u0159ava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1, 0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/jhep02(2015)054", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1052482", 
            "issn": [
              "1126-6708", 
              "1029-8479"
            ], 
            "name": "Journal of High Energy Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2015"
          }
        ], 
        "keywords": [
          "conformal matter", 
          "single M5-brane", 
          "M5-branes", 
          "singularity", 
          "system", 
          "global symmetry", 
          "symmetry", 
          "matter", 
          "An series", 
          "series", 
          "usual notion", 
          "notion", 
          "bifundamental matter", 
          "cases", 
          "superconformal system", 
          "dimensions", 
          "ADE singularities", 
          "wall", 
          "matter systems", 
          "theory realization", 
          "realization", 
          "theory", 
          "tensor branch", 
          "branches", 
          "fractionalization", 
          "intersection points", 
          "point", 
          "Higgsing", 
          "SCFTs", 
          "Infrared", 
          "class of theories", 
          "class", 
          "branes", 
          "IIA string theory", 
          "string theory", 
          "circle", 
          "Novel Dual", 
          "dual", 
          "affine quivers", 
          "quivers", 
          "lead", 
          "gravity duals", 
          "ADE-type singularity", 
          "Ho\u0159ava-Witten wall", 
          "superconformal matter system", 
          "E8 \u00d7 G global symmetry", 
          "\u00d7 G global symmetry", 
          "G global symmetry", 
          "Coulomb/tensor branch", 
          "notion of fractionalization", 
          "Partial Higgsing", 
          "new 6d SCFTs", 
          "M5-branes leads"
        ], 
        "name": "6d Conformal matter", 
        "pagination": "54", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022076696"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/jhep02(2015)054"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/jhep02(2015)054", 
          "https://app.dimensions.ai/details/publication/pub.1022076696"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_651.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/jhep02(2015)054"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)054'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)054'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)054'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/jhep02(2015)054'


     

    This table displays all metadata directly associated to this object as RDF triples.

    223 TRIPLES      22 PREDICATES      99 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/jhep02(2015)054 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6269be826f0841b2911061e090b973be
    4 schema:citation sg:pub.10.1007/bfb0090294
    5 sg:pub.10.1007/jhep04(2014)064
    6 sg:pub.10.1007/jhep05(2011)023
    7 sg:pub.10.1007/jhep05(2013)068
    8 sg:pub.10.1007/jhep05(2013)092
    9 sg:pub.10.1007/jhep05(2014)028
    10 sg:pub.10.1007/jhep05(2014)080
    11 sg:pub.10.1007/jhep06(2011)120
    12 sg:pub.10.1007/jhep07(2011)030
    13 sg:pub.10.1007/jhep07(2011)075
    14 sg:pub.10.1007/jhep08(2014)002
    15 sg:pub.10.1007/jhep10(2013)086
    16 sg:pub.10.1007/jhep11(2010)132
    17 sg:pub.10.1007/jhep12(2014)003
    18 sg:pub.10.1007/s10955-009-9687-3
    19 sg:pub.10.1088/1126-6708/1997/09/001
    20 sg:pub.10.1088/1126-6708/1998/02/006
    21 sg:pub.10.1088/1126-6708/1998/03/003
    22 sg:pub.10.1088/1126-6708/1998/07/012
    23 sg:pub.10.1088/1126-6708/1999/07/009
    24 sg:pub.10.1088/1126-6708/2009/01/058
    25 schema:datePublished 2015-02-10
    26 schema:datePublishedReg 2015-02-10
    27 schema:description A single M5-brane probing G, an ADE-type singularity, leads to a system which has G × G global symmetry and can be viewed as “bifundamental” (G, G) matter. For the AN series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1, 0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E8 × G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G, G′) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1, 0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N0019db026f34459abbe12062ca5555d8
    32 N20bfe3f5f1b748cea35de71d05eda09f
    33 sg:journal.1052482
    34 schema:keywords ADE singularities
    35 ADE-type singularity
    36 An series
    37 Coulomb/tensor branch
    38 E8 × G global symmetry
    39 G global symmetry
    40 Higgsing
    41 Hořava-Witten wall
    42 IIA string theory
    43 Infrared
    44 M5-branes
    45 M5-branes leads
    46 Novel Dual
    47 Partial Higgsing
    48 SCFTs
    49 affine quivers
    50 bifundamental matter
    51 branches
    52 branes
    53 cases
    54 circle
    55 class
    56 class of theories
    57 conformal matter
    58 dimensions
    59 dual
    60 fractionalization
    61 global symmetry
    62 gravity duals
    63 intersection points
    64 lead
    65 matter
    66 matter systems
    67 new 6d SCFTs
    68 notion
    69 notion of fractionalization
    70 point
    71 quivers
    72 realization
    73 series
    74 single M5-brane
    75 singularity
    76 string theory
    77 superconformal matter system
    78 superconformal system
    79 symmetry
    80 system
    81 tensor branch
    82 theory
    83 theory realization
    84 usual notion
    85 wall
    86 × G global symmetry
    87 schema:name 6d Conformal matter
    88 schema:pagination 54
    89 schema:productId N2c07f4f4f6cb4429bc7b1c080d38095e
    90 Nd0915b1cb7ea455aaccf48ba824a27df
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076696
    92 https://doi.org/10.1007/jhep02(2015)054
    93 schema:sdDatePublished 2021-12-01T19:32
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N36d29438ac604964898f855d7431301a
    96 schema:url https://doi.org/10.1007/jhep02(2015)054
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N0019db026f34459abbe12062ca5555d8 schema:issueNumber 2
    101 rdf:type schema:PublicationIssue
    102 N20bfe3f5f1b748cea35de71d05eda09f schema:volumeNumber 2015
    103 rdf:type schema:PublicationVolume
    104 N2c07f4f4f6cb4429bc7b1c080d38095e schema:name dimensions_id
    105 schema:value pub.1022076696
    106 rdf:type schema:PropertyValue
    107 N36d29438ac604964898f855d7431301a schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N5941f6196f58443a96712aad3755076f rdf:first sg:person.014523005000.99
    110 rdf:rest rdf:nil
    111 N6269be826f0841b2911061e090b973be rdf:first sg:person.015737202107.23
    112 rdf:rest Nd2bcb0ca780d4b0a8ded75a6030d1dcd
    113 Nd0915b1cb7ea455aaccf48ba824a27df schema:name doi
    114 schema:value 10.1007/jhep02(2015)054
    115 rdf:type schema:PropertyValue
    116 Nd2bcb0ca780d4b0a8ded75a6030d1dcd rdf:first sg:person.013340640304.57
    117 rdf:rest Nfea2a5e0f6c84ee3b42b71c3ba65ca0c
    118 Nfea2a5e0f6c84ee3b42b71c3ba65ca0c rdf:first sg:person.015537354277.22
    119 rdf:rest N5941f6196f58443a96712aad3755076f
    120 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Mathematical Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Pure Mathematics
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1052482 schema:issn 1029-8479
    127 1126-6708
    128 schema:name Journal of High Energy Physics
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.013340640304.57 schema:affiliation grid-institutes:grid.410711.2
    132 schema:familyName Heckman
    133 schema:givenName Jonathan J.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013340640304.57
    135 rdf:type schema:Person
    136 sg:person.014523005000.99 schema:affiliation grid-institutes:grid.38142.3c
    137 schema:familyName Vafa
    138 schema:givenName Cumrun
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014523005000.99
    140 rdf:type schema:Person
    141 sg:person.015537354277.22 schema:affiliation grid-institutes:grid.7563.7
    142 schema:familyName Tomasiello
    143 schema:givenName Alessandro
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015537354277.22
    145 rdf:type schema:Person
    146 sg:person.015737202107.23 schema:affiliation grid-institutes:grid.38142.3c
    147 schema:familyName Del Zotto
    148 schema:givenName Michele
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015737202107.23
    150 rdf:type schema:Person
    151 sg:pub.10.1007/bfb0090294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020531009
    152 https://doi.org/10.1007/bfb0090294
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/jhep04(2014)064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033915149
    155 https://doi.org/10.1007/jhep04(2014)064
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/jhep05(2011)023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026644863
    158 https://doi.org/10.1007/jhep05(2011)023
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/jhep05(2013)068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046275015
    161 https://doi.org/10.1007/jhep05(2013)068
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep05(2013)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021558045
    164 https://doi.org/10.1007/jhep05(2013)092
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep05(2014)028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623483
    167 https://doi.org/10.1007/jhep05(2014)028
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep05(2014)080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052193752
    170 https://doi.org/10.1007/jhep05(2014)080
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep06(2011)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023581283
    173 https://doi.org/10.1007/jhep06(2011)120
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep07(2011)030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012431406
    176 https://doi.org/10.1007/jhep07(2011)030
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep07(2011)075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007650643
    179 https://doi.org/10.1007/jhep07(2011)075
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep08(2014)002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045641286
    182 https://doi.org/10.1007/jhep08(2014)002
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep10(2013)086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024132084
    185 https://doi.org/10.1007/jhep10(2013)086
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep11(2010)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051790309
    188 https://doi.org/10.1007/jhep11(2010)132
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep12(2014)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052599681
    191 https://doi.org/10.1007/jhep12(2014)003
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10955-009-9687-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023816735
    194 https://doi.org/10.1007/s10955-009-9687-3
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1088/1126-6708/1997/09/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017830394
    197 https://doi.org/10.1088/1126-6708/1997/09/001
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1088/1126-6708/1998/02/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046085625
    200 https://doi.org/10.1088/1126-6708/1998/02/006
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1088/1126-6708/1998/03/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049975593
    203 https://doi.org/10.1088/1126-6708/1998/03/003
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1088/1126-6708/1998/07/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002419177
    206 https://doi.org/10.1088/1126-6708/1998/07/012
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1088/1126-6708/1999/07/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018492151
    209 https://doi.org/10.1088/1126-6708/1999/07/009
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1088/1126-6708/2009/01/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041338859
    212 https://doi.org/10.1088/1126-6708/2009/01/058
    213 rdf:type schema:CreativeWork
    214 grid-institutes:grid.38142.3c schema:alternateName Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.
    215 schema:name Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.
    216 rdf:type schema:Organization
    217 grid-institutes:grid.410711.2 schema:alternateName Department of Physics, University of North Carolina, 27599, Chapel Hill, NC, U.S.A.
    218 schema:name Department of Physics, University of North Carolina, 27599, Chapel Hill, NC, U.S.A.
    219 Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, U.S.A.
    220 rdf:type schema:Organization
    221 grid-institutes:grid.7563.7 schema:alternateName Dipartimento di Fisica, Università di Milano Bicocca, Milan, Italy
    222 schema:name Dipartimento di Fisica, Università di Milano Bicocca, Milan, Italy
    223 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...